Abstract:
Disclosed herein is an AC light emitting diode. The light emitting diode comprises a plurality of light emitting cells two-dimensionally arranged on a single substrate. Wires electrically connect the light emitting cells to one another to thereby form a serial array of the light emitting cells. Further, the light emitting cells are spaced apart from one another by distances within a range of 10 to 30 D, and the serial array is operated while connected to an AC power source. Accordingly, the excellent operating characteristics and light output power can be secured in an AC light emitting diode with a limited size.
Abstract:
The present invention discloses a light emitting diode (LED) including a plurality of light emitting cells arranged on a substrate. The LED includes half-wave light emitting units each including at least one light emitting cell, each half-wave light emitting unit including first and second terminals respectively arranged at both ends thereof; and full-wave light emitting units each including at least one light emitting cell, each full-wave light emitting units including third and fourth terminals respectively formed at both ends thereof. The third terminal of each full-wave light emitting unit is electrically connected to the second terminals of two half-wave light emitting units, and the fourth terminal of each full-wave light emitting unit is electrically connected to the first terminals of other two half-wave light emitting units. Also, a first half-wave light emitting unit is connected in series between the third terminal of a first full-wave light emitting unit and the fourth terminal of a second full-wave light emitting units, and a second half-wave light emitting units is connected in series between the fourth terminal of the first full-wave light emitting unit and the third terminal of the second full-wave light emitting unit.
Abstract:
The present invention relates to a light emitting device and a method of manufacturing the light emitting device. According to the present invention, the light emitting device comprises a substrate, an N-type semiconductor layer formed on the substrate, and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein a side surface including the N-type or P-type semiconductor layer has a slope of 20 to 80° from a horizontal plane. Further, the present invention provides a light emitting device comprising a substrate formed with a plurality of light emitting cells each including an N-type semiconductor layer and a P-type semiconductor layer formed on the N-type semiconductor layer, and a submount substrate flip-chip bonded onto the substrate, wherein the N-type semiconductor layer of one light emitting cell and the P-type semiconductor layer of another adjacent light emitting cell are connected to each other, and a side surface including at least the P-type semiconductor layer of the light emitting cell has a slope of 20 to 80° from a horizontal plane. Further, the present invention is provides a method of manufacturing the light emitting device. Accordingly, there is an advantage in that the characteristics of a light emitting device such as luminous efficiency, external quantum efficiency and extraction efficiency are enhanced and the reliability is secured such that light with high luminous intensity and brightness can be emitted.
Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
Abstract:
Disclosed herein is an AC light emitting diode. The light emitting diode comprises a plurality of light emitting cells two-dimensionally arranged on a single substrate. Wires electrically connect the light emitting cells to one another to thereby form a serial array of the light emitting cells. Further, the light emitting cells are spaced apart from one another by distances within a range of 10 to 30 D, and the serial array is operated while connected to an AC power source. Accordingly, the excellent operating characteristics and light output power can be secured in an AC light emitting diode with a limited size.
Abstract:
There is provided a light emitting diode operating under AC power comprising a substrate; a buffer layer formed on the substrate; and a plurality of light emitting cells formed on the buffer layer to have different sizes and to be electrically isolated from one another, the plurality of light emitting cells being connected in series through metal wires.According to the present invention, light emitting cells formed in an LED have different sizes, and thus have different turn-on voltages when light is emitted under AC power, so that times when the respective light emitting cells start emitting light are different to thereby effectively reduce a flicker phenomenon.
Abstract:
AC LED according to the present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer consisting of a first conductive compound semiconductor layer formed on top of the substrate, an upper semiconductor layer consisting of a second conductive compound semiconductor layer formed on top of the lower semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and the respective light emitting cells are arranged so that the upper electrode pad and the lower electrode of one of the light emitting cells are symmetric with respect to those of adjacent another of the light emitting cells.
Abstract:
Disclosed herein is a method of fabricating a light emitting diode. The method comprises preparing a substrate, forming a lower semiconductor layer, an active layer and an upper semiconductor layer on the substrate, forming a photoresist pattern over the upper semiconductor layer such that a sidewall of the photoresist pattern is inclined to an upper surface of the substrate, and sequentially etching the upper semiconductor layer, active layer and lower semiconductor layer using the photoresist pattern as an etching mask. With this structure, since the light emitting diode permits light generated in the active layer to be easily emitted to an outside through the sidewalls of the semiconductor layers, it has improved light emitting efficiency.
Abstract:
The present invention relates to light-emitting diodes. A light-emitting diode according to an exemplary embodiment of the present invention includes a first group including a plurality of first light emitting cells connected in parallel to each other, and a second group including a plurality of second light emitting cells connected in parallel to each other. Each first light emitting cell and second light emitting cell has a semiconductor stack that includes a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer. At least two light emitting cells of the first light emitting cells share the first conductivity-type semiconductor layer, and at least two light emitting cells of the second light emitting cells share the first conductivity-type semiconductor layer. The first light emitting cells are connected in series to the second light emitting cells.
Abstract:
A Light Emitting Diode (LED) package and a method of manufacturing the same. The LED package includes a substrate. The substrate defines therein a cavity having a tapered shape, a stepped portion formed on the upper end of the cavity, and a through hole formed in the bottom of the cavity. A conductive film fills the through-hole and is formed on the bottom and the side surfaces of the cavity. An LED has a fluorescent layer thereon, and is flip-chip bonded onto the conductive film. An encapsulant encapsulates the cavity. A Zener diode or a rectifier is provided on the silicon substrate.