Abstract:
A system and method for collecting symptomatic data to screen for a targeted disease. Testing hardware incorporates a plurality of testing units with corresponding indicators that can be altered to indicate whether a symptom is present or not. The resulting data from the testing use can then be analyzed to determine the likelihood of presence of a disease.
Abstract:
Portable devices for anti-drug antibody (ADA) testing, to estimate safety and/or efficacy of therapeutic agents are provided. These devices can be used to perform point of care risk assessment for various applications, including but not restricted to one or more of the following: selection of therapeutic drug for patient treatment; evaluation of the need to change therapeutic drug or to apply tolerance regimens; patient immune status prior and after vaccination; selection of patients for clinical trials; comparison of therapeutic drugs marketed for a given disease and also gene therapy; testing pre-existing antibodies as a risk factor; postmarketing surveillance of therapeutic drugs.
Abstract:
A system and method for determining the immune status or immune cycle in a subject is provided. A sampling component for obtaining physiological data from the subject is provided together with a data storage component for storing the physiological data obtained from the subject. A processing component is provided to analyse the physiological data and thereby determine the immune status or periodicity of the immune cycle and the immune cycle of the subject. An output component for outputting the immune status or periodicity of the immune cycle, and the immune cycle of the subject and/or the future status or immune cycle of the subject is provided.
Abstract:
Devices and methods for draining excess lymph fluid are disclosed. The device can be fixed to the blood vessel adjacent to the thoracic duct. The device can have a port for withdrawing lymph fluid exiting the thoracic duct. The device can have a cannula and/or subcutaneous port to draw the lymph fluid away from the thoracic duct and reduce hemostatic pressure in the lymphatic system.
Abstract:
This invention relates to diagnostic medical instruments and procedures, and more particularly to implantable devices and methods for monitoring physiological parameters. A device for providing in vivo diagnostics of infections in orthopedic implants having at least one signal processing device operatively coupled with sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal. The invention also relates to a method using the device of the invention for detecting infection associated with implants in a human or animal subject.
Abstract:
Systems and methods are disclosed that facilitate providing guidance to a user during performance of a program or routine using a personalized avatar. In an aspect, a system includes a reception component configured to receive biochemical information about a physiological state or condition of a user, including information identifying a presence or a status of one or more biomarkers. The system further includes an analysis component configured to determine or infer one or more characteristics of the physiological state or condition of the user based on the information identifying the presence or the status of the one or more biomarkers, and a visualization component configured to adapt an appearance of an avatar presented to the user based on the one or more characteristics to reflect the one or more characteristics.
Abstract:
Methods and imaging agents are used to functionally image lymph structures and to identify, diagnose, assess, monitor and direct therapies for lymphatic disorders. Embodiments of the methods utilize highly sensitive optical imaging and fluorescent spectroscopy techniques capable of rapid temporal resolution to non-invasively track or monitor packets of imaging agents flowing in one or more lymphatic structures in human patients to provide quantitative information regarding lymph propulsion and functionality of the lymphatic structures. An imaging agent comprises a fluorophore labeled peptide capable of binding integrin α9β1 on a lymphatic structure.
Abstract:
The present invention relates to computer-implemented methods and system for analyzing a biomarker which cycles in a subject. In some other aspects, the present invention relates to analyzing a biomarker which at least initially increases or decreases in amount in a subject following a treatment for a disease. In further aspects, the present invention relates to computer-implemented methods and systems for determining a preferred time to administer a therapy to treat a disease in a subject. The present invention also relates to computer program product to implement the methods. Further, the present invention relates to methods of determining the timing of treating a disease in a subject in which the immune system is cycling.
Abstract:
The present invention relates to computer-implemented methods and system for analyzing a biomarker which cycles in a subject. In some other aspects, the present invention relates to analyzing a biomarker which at least initially increases or decreases in amount in a subject following a treatment for a disease. In further aspects, the present invention relates to computer-implemented methods and systems for determining a preferred time to administer a therapy to treat a disease in a subject. The present invention also relates to computer program product to implement the methods. Further, the present invention relates to methods of determining the timing of treating a disease in a subject in which the immune system is cycling.
Abstract:
Novel methods and imaging agents for functional imaging of lymph structures are disclosed herein. Embodiments of the methods utilize highly sensitive optical imaging and fluorescent spectroscopy techniques to track or monitor packets of organic dye flowing in one or more lymphatic structures. The packets of organic dye may be tracked to provide quantitative information regarding lymph propulsion and function. In particular, lymph flow velocity and pulse frequency may be determined using the disclosed methods.