Abstract:
The application relates to methods of manufacture of improved optical containment structures. The invention relates to arrays of zero-mode waveguide structures comprising nanoscale apertures having non-reflective coatings on their walls. The methods provide for selectively coating the walls of the zero mode waveguides, allowing for selective functionalization of the bases.
Abstract:
A method of a forming a hollow, drug-eluting nitinol stent includes shaping a composite wire into a stent pattern, wherein the composite wire comprises an inner member, a nitinol intermediate member, and an outer member. After the composite wire is shaped into the stent pattern, the composite wire is heat treated to set the nitinol intermediate member in the stent pattern. After heat treatment, the composite wire is processed to remove the outer member and the inner member without adversely affecting the intermediate member. Openings may be provided through the intermediate member and the lumen of the intermediate member may be filled with a substance to be eluted through the openings.
Abstract:
Described herein are electrodeposited corrosion-resistant multilayer coating and claddings that comprises multiple nanoscale layers that periodically vary in electrodeposited species or electrodeposited microstructures. The coatings may comprise electrodeposited metals, ceramics, polymers or combinations thereof. Also described herein are methods for preparation of the coatings and claddings.
Abstract:
A method for producing a corrosion-resistant steel sheet made of an unalloyed or low-alloy and cold-rolled steel having a carbon content of less than 0.1 wt %. The method includes the following steps: applying a metal coating to the steel sheet; annealing the coated steel sheet in a recrystallizing manner by heating the coated steel sheet to temperatures in the recrystallization range by electromagnetic induction in an inert-gas atmosphere; and quenching the coated and annealed steel sheet. The metal coating is fused on during the recrystallization annealing.
Abstract:
Golden bronze appearance article, multiple-layer substrate, related methods and uses thereof, particularly for coinage blanks. Methods of producing an article having a golden bronze appearance include annealing a multiple-layer substrate at an annealing temperature for an annealing residence time. The multiple-layer substrate includes a core, contiguous to a copper layer and subsequent tin layer. The annealing temperature and annealing residence time are controlled in accordance with each other for allowing diffusion of the tin layer into the copper layer and producing an annealed substrate comprising an inter-diffused outer bronze layer having a golden appearance. The tin layer thickness is in accordance to the copper layer thickness such that the inter-diffused outer bronze layer has a tin content between about 8% wt. and about 15.8% wt. The core has a sufficiently low content of nickel to reduce or prevent formation of intermetallic compound comprising tin and nickel proximate to the core during annealing.
Abstract:
There is provided a surface-treated steel sheet for battery containers. The surface-treated sheet is used to form a battery container for a battery. The battery uses a nonaqueous electrolytic solution as an electrolytic solution. The surface-treated steel sheet is characterized by the features as below. The surface-treated steel sheet includes a base material made of steel and an iron-nickel diffusion layer formed by performing thermal diffusion treatment after forming a nickel plating layer at least on a surface of the base material to be located at the inner surface side of the battery container. The iron-nickel diffusion layer has an outermost layer of which a ratio of Ni and Fe is 7.5 or less as a molar ratio of Ni/Fe. The iron-nickel diffusion layer has a thickness of 0.6 μm or more.
Abstract:
The invention relates to a steel and to a flat steel product produced therefrom that have optimized mechanical properties and at the same time can be produced at low cost, without having to rely for this on expensive alloying elements that are subject to great fluctuations with regard to their procurement costs. The steel and the flat steel product have for this purpose the following composition according to the invention (in % by weight): C: 0.11-0.16%; Si: 0.1-0.3%; Mn: 1.4-1.9%; Al: 0.02-0.1%; Cr: 0.45-0.85%; Ti: 0.025-0.06%; B: 0.0008-0.002%, the remainder Fe and impurities that are unavoidable for production-related reasons, which include contents of phosphorus, sulfur, nitrogen or molybdenum as long as the following respectively apply for their contents: P: ≦0.02%, S: ≦0.003%, N: ≦0.008%, Mo: ≦0.1%. Similarly, the invention relates to a method for producing a flat steel product that consists of a steel according to the invention.
Abstract:
A method of manufacturing coated components, e.g., for use in downhole drilling, which may limit, during the manufacturing process, the formation of microfissures and other performance-inhibiting characteristics in the abrasion resistant coating. The method may include applying an abrasion resistant coating composition to a substrate. The abrasion resistant coating composition and at least the surface of the substrate may be heated to effect metallurgical bonding of the abrasion resistant coating composition with the substrate. The substrate may then be austempered under process conditions selected to limit the volume of expansion of the substrate during austempering to less than about 0.8%.
Abstract:
This relates to a process for manufacturing a recovery annealed coated steel substrate for packaging applications and a packaging steel product produced thereby.
Abstract:
A dual phase or complex phase steel strip showing no tigerstripes. The steel strip includes, in mass percent, the following elements: C 0.08-0.11%; Mn 1.70-2.20%; Si at most 0.1%; Cr 0.40-0.70%; Mo at most 0.3%; Ni at most 1.0%, Al 0.01-1.50%; Nb at most 0.07%; P equal to or more than 0.005%; N equal to or less than 0.015%; Ti equal to or less than 0.1%; V equal to or less than 0.1%; B equal to or less than 0.01%; wherein the sum of Cr, Mo and Ni is at least 0.5%; the balance being Fe and inevitable impurities.