Abstract:
Methods, apparatus and systems for collecting thin tissue samples for imaging. Thin tissue sections may be cut from tissue samples using a microtome-quality knife. In one example, tissue samples are mounted to a substrate that is rotated such that thin tissue sections are acquired via lathing. Collection of thin tissue sections may be facilitated by a conveyor belt. Thin tissue sections may be mounted to a thin substrate (e.g., by adhering thin tissue sections to a thin substrate via a roller mechanism) that may be imaged, for example, by an electron beam (e.g., in an electron microscope). This tissue sections may be strengthened before cutting via a blockface thinfilm deposition technique and/or a blockface taping technique. An automated reel-to-reel imaging technique may be employed for collected/mounted tissue sections to facilitate random-access imaging of tissue sections and maintaining a comprehensive library including a large volume of samples.
Abstract:
Disclosed herein are apparatuses and methods handling a portion of a tissue sample when sectioned by a microtome. The apparatuses include a container, a tissue sample holder in the container, and one or more outlets configured to allow flow of a fluid from the container. the flow through the outlet causes a portion of the tissue sample sectioned by a microtome to move into the outlet. The methods include sectioning one or more portions of a tissue sample, and flowing a fluid past the tissue sample to cause the one or more portions of the tissue sample to move away from the tissue sample and toward at least one fluid outlet.
Abstract:
An analyzer comprising: a first measurement unit for measuring samples; a second measurement unit; and a transportation device operable to transport a plurality of sample containers accommodated in a first rack and containing samples and a plurality of sample containers accommodated in a second rack and containing samples, to the first measurement unit and the second measurement unit, wherein the transportation device comprises a first transportation section operable to transport the plurality of sample containers on the first rack to the first measurement unit and the second measurement unit by transporting the first rack on a transport path, and a second transportation section operable to transport the plurality of sample containers on the second rack to the first measurement unit and the second measurement unit by transporting the second rack on the transport path independently from movement of the first rack, is disclosed. A transportation device is also disclosed.
Abstract:
A device for applying a histological section to a slide is described. The histological section is generated by a cutting action performed by a blade of a microtome. The device comprises a positioning device having a component that is rotatably mounted to a bearing and has a receptacle for receiving and holding the slide, wherein the positioning device is designed such that the slide received in the receptacle can be rotated about an axis of rotation of the rotatably mounted component.
Abstract:
A sample sectioning device includes a cutting mechanism, a sample holder, a drive system, and a surface orientation sensor. The sample holder is operable to hold a sample. The cutting mechanism is operable to cut sections from the sample. The drive system is coupled with the sample holder. The drive system is operable to drive movement between the sample held by the sample holder and the cutting mechanism. The surface orientation sensor is operable to sense an orientation of a surface of the sample held by the sample holder.
Abstract:
A composite focused ion beam device has a first ion beam irradiation system that irradiates a first ion beam for processing a sample and a second ion beam irradiation system that irradiates a second ion beam for processing or observing the sample. The first ion beam irradiation system has a plasma type gas ion source that generates first ions for forming the first ion beam, each of the first ions having a first mass. The second ion beam irradiation system has a gas field ion source that generates second ions for forming the second ion beam. Each of the second ions has a second mass smaller than that of the first mass.
Abstract:
A microtome for in situ residence within a chamber of a scanning electron microscope (SEM) and a SEM including the microtome is disclosed. The microtome includes a specimen holder for holding a specimen thereon at high voltage to produce a retardation field thereat and a movable knife. The SEM includes a backscatter electron detector disposed adjacent to specimen holder. The knife arranged is to be carried into engagement with the specimen on the specimen holder to slice a portion of the specimen away to expose a new face of the specimen without interfering with the high voltage on the specimen, and is mounted so that after having engaged the specimen to expose a new face of the specimen it is withdrawn to a retracted position whereupon it does not interfere with the retardation field.
Abstract:
A specimen slicing guide for use in slicing a biopsy specimen taken from a human patient or an animal patient includes a base extending in a longitudinal direction. A plurality of needles extends substantially perpendicularly to the base and the needles are spaced along the longitudinal direction of the base. Two specimen slicing guides are coupled via at least one link, which is adapted to allow an adjustable spacing of the two specimen slicing guides in a parallel relationship. A method of cutting a biopsy specimen includes fixing the biopsy specimen relative to a support surface using the needles of two, parallel-arranged specimen slicing guides, inserting a cutting tool between corresponding needle gap pairs and then downwardly moving the cutting tool under guidance of adjacent needles.
Abstract:
A system (100) and a method for the unequivocal allocation of histological cassettes (30) and specimen slides (60) is described. The system encompasses a microtome (1) and at least one reading unit (80). The data (33) of the histological cassette (30) and the data (33) of the at least one specimen slide (60) are read by means of the reading unit (80). The reading unit (80) is provided with at least one indicating element (83) that outputs a signal in accordance with the degree of correspondence between the data (33) of the histological cassette (30) and the data (33) on the specimen slide (60).
Abstract:
An apparatus and a method for filtering sectioning wastes of a microtome that are present in an air stream are described. The apparatus has an aspiration device with which sectioning waste can be aspirated from a blade region of the microtome with an air stream. A main filter and a prefilter are provided. A valve is provided for opening and closing an opening so that the air stream so that if desired an air stream can be directed through a filter insert in the prefilter for emptying the prefilter into the main filter. According to the method, an air stream that is used for aspirating sectioning waste from a blade region of the microtome is shut off immediately before emptying the prefilter.