摘要:
The invention relates to very small-sized color image sensors. The sensor according to the invention is made by the following method: the formation, on the front face of the semiconductive wafer (10), of a series of active zones (ZA) comprising image detection circuits and each corresponding to a respective image sensor, each active zone comprising photosensitive zones (12) covered with conductive and insulating layers (14, 16) enabling the collection of electrical charges generated in the photosensitive zones, the transfer of the wafer (10) by its front face against the front face of a supporting substrate (20), the elimination of the major part of the thickness of the semiconductive wafer, leaving a very fine semiconductive layer (30) on the substrate, this fine semiconductive layer comprising the photosensitive zones, the deposition and etching of color filters (18) on the semiconductive layer thus thinned.
摘要:
An object of the present invention is to provide a large-size light-emitting device from which uniform light emission can be obtained. That is, in the present invention, in a device having an outermost diameter of not smaller than 700 nullm, a distance from an n electrode to a farthest point of a p electrode is selected to be not larger than 500 nullm.
摘要:
A module includes a component, a circuit board having the component mounted thereon, a first grounding pattern formed on an outermost periphery of a surface portion of the circuit board; a first sealer provided on the circuit board and having a dimension projected on the circuit board, and a metal film covering the sealer and connected to the grounding pattern. The dimension of the first dealer is smaller than an outside dimension of the circuit board. The first sealer is made of first resin and sealing the component. The module has a low profile and is adequately shielded.
摘要:
One (or more) contacts are produced on one or more active areas of a semiconductor wafer, it being possible for one or more isolated control lines to be arranged on the active areas with which contact is to be made. The control lines may, for example, be gate lines. The semiconductor component is fabricated in the following way. application of a polysilicon layer to the semiconductor wafer, patterning of the polysilicon layer, in order to produce a polysilicon contact above the active area, the polysilicon contact at least partly covering the two control lines, application of a first insulator layer to the semiconductor wafer, with the polysilicon contact being embedded, partial removal of the first insulator layer, so that at least the upper surface of the polysilicon contact is uncovered, and application of a metal layer to the semiconductor wafer in order to make electrical contact with the polysilicon contact.
摘要:
A photosensitive diode has an active region defining a majority carrier of a first conductivity type and a minority carrier of a second conductivity type. At least one extraction region is disposed on a first side of the active region and has a majority carrier of the second conductivity type. Carriers of the second conductivity type are extracted from the active region and into the extraction region under a condition of reverse bias. At least one exclusion region is disposed on a second side of the active region and has a majority carrier of the first conductivity type. The exclusion region prevents entry of its minority carriers, which are of the second conductivity type, into the active region while in a condition of reverse bias. The exclusion region includes a superlattice with a plurality of layers.
摘要:
Briefly, in accordance with an embodiment of the invention, a lateral phase change memory and a method to manufacture a phase change memory is provided. The method may include forming a conductor material over a substrate and patterning the conductor material to form two electrodes from the conductor material, wherein the two electrodes are separated by a sub-lithographic distance. The method may further include forming a phase change material between the two electrodes.
摘要:
A charge storage capacitor which is connected to various light sensitive and/or electrical elements of a CMOS imager, as well as methods of formation, are disclosed. The charge storage capacitor may be formed entirely over a field oxide region of the CMOS imager, entirely over an active area of a pixel sensor cell, or partially over a field oxide region and partially over an active pixel area of a pixel sensor cell.
摘要:
A multi-chip semiconductor package and a fabrication method thereof are provided. A substrate having an upper surface and a lower surface is prepared. At least a first chip is mounted on the upper surface of the substrate. A non-conductive material is applied over predetermined area on the first chip and the upper surface of the substrate. At least a second chip is mounted on the non-conductive material, and formed with at least a suspending portion free of interference in position with the first chip, wherein the non-conductive material is dimensioned in surface area at least corresponding to the second chip, so as to allow the suspending portion to be supported on the non-conductive material. With the second chip being completely supported on the non-conductive material without causing a conventional chip-crack problem, structural intactness and reliability can be effectively assured for fabricated-package products.
摘要:
A multi-layer semiconductor diode having a layer of wide bandgap material located between the active layer and a first contact zone, where the active layer and additional wide bandgap layer are of one dopant type, and the first contact zone is of the opposite dopant type. A specific embodiment of the invention comprises a stack formed from a first contact zone (4) of p-type material, a lightly doped p-type active layer (2), an additional p layer (20) and a second contact zone (6) of n-type material. The diode may be used as an infrared detector or a negative luminescent source.
摘要:
In one aspect, the invention provides semiconductor sensor which includes a first single crystal silicon wafer layer. A single crystal silicon structure is formed in the first wafer layer. The structure includes two oppositely disposed substantially vertical major surfaces and two oppositely disposed generally horizontal minor surfaces. The aspect ratio of major surface to minor surface is at least 5:1. A carrier which includes a recessed region is secured to the first wafer layer such that said structure is suspended opposite the recessed region.