Abstract:
A microwave frequency converting receiver of an RF unit should be generally used in wireless/mobile communications systems such as cellular, PCS, WLL and IMT2000 systems and also have low power consumption, low-noise characteristic, high gain and small size. In order to produce the above frequency converting receiver, a multi-band and multi-mode frequency converting receiver for use in a wireless mobile communications system comprises a wideband low-noise amplifier for amplifying a radio frequency input signal, a frequency mixer for generating an intermediate frequency signal having a relatively high linearity by mixing a local oscillator frequency signal and the amplified radio frequency signal outputted from the wideband low noise amplifier, an intermediate frequency amplifier for producing a final intermediate frequency signal by amplifying the intermediate frequency signal derived from the frequency mixer and an input matching circuit for receiving a microwave signal within a frequency band of the wireless mobile communications system, impedance-matching the received microwave signal to the radio frequency input signal of the wideband low-noise amplifier and determining an operating frequency band of the frequency converting receiver.
Abstract:
A lead frame for making a semiconductor package is disclosed. The leadframe's leads include a lead lock provided at a free end of each inner lead that is adapted to increase a bonding force of the inner lead to a resin encapsulate, thereby effectively preventing a separation of the inner lead from occurring in a singulation process involved in the fabrication of the semiconductor package. A semiconductor package fabricated using the lead frame and a fabrication method for the semiconductor package are also disclosed. The lead frame includes a paddle, a plurality of tie bars for supporting the comers of the paddle, a plurality of leads arranged at each of four sides or two facing sides of the paddle in such a fashion that they are spaced apart from an adjacent side of the paddle while extending perpendicularly to the associated side of the paddle, each of the leads having lead separation preventing means adapted to increase a bonding force of the lead to a resin encapsulate subsequently molded to encapsulate the lead frame for fabrication of the semiconductor package, and dam bars for supporting the leads and the tie bars. Additional package embodiments include exposed protrusions extending downward from the leads. The exposed protrusions are irradiated with a laser to remove set resin prior to a solder ball attachment step.
Abstract:
A double balanced active mixer is used for compensating an asymmetric characteristic of complementary radio frequency signals, to thereby improve linearity of the double balanced active mixer. The double balanced active mixer includes an input transistor part for amplifying first and second radio frequency signals having complementary phase each other which are inputted from external circuit and for transferring the amplified first and second radio frequency signals and an Output transistor part for outputting first and second intermediate frequency signals which are complementary each other by switching the amplified first and second radio frequency signals.
Abstract:
The present invention relates to a power supply selectively using a chip driving power and a data input/output driving power in a semiconductor device. The power supply according to the present invention includes a switch for selectively coupling a first power line providing power to an internal circuit to a second power line providing power to a data input/output unit in response to a control signal which is produces according to an operation mode; and a controller for receiving row address strobe signals corresponding to each of memory banks, and a self-refresh signal activated in a refresh mode and producing the control signal. Accordingly, the present invention has an effect on the reduction of a noise generated on the power line, by selectively using the chip driving power and the data input/output driving power. Furthermore, the present invention increases the operation speed of the memory device by effectively using the power lines.
Abstract:
A fabrication method of a semiconductor device is disclosed. A T-shaped gate used for decreasing the gate resistance is adopted in fabricating an ultrahigh frequency and low-noise device. According to the present invention, a gate pattern is formed by a dual exposure technique, a thin metal film is formed, a pattern for plating is formed, and a gate is formed by electroplating, whereby decreasing a gate length and gate resistance. Therefore, the cost of production is decreased, the yield is improved, and the noise figure is minimized.
Abstract:
Disclosed is a fabricating method of a quantum wire laser diode, comprising the steps of preparing a GaAs substrate; sequentially forming n-type epitaxial layers and a first photoresist layer on the GaAs substrate; removing a portion of the intrinsic GaAs layer by using a first etching solution, and then removing the photoresist layer; wet-etching away a portion of the intrinsic AlAs layer in the vicinity of the opening by using a second etching solution; growing a quantum structure in the molecular beam epitaxy apparatus to form a multiple quantum well on the intrinsic GaAs layer and form a quantum wire on the n-type energy band slope layer through the opening; removing the quantum well, the intrinsic GaAs layer and the intrinsic AlAs layer simultaneously by using a third etching solution; sequentially forming a p-type energy band slope layer, a p-type cladding layer and a p.sup.+ -GaAs layer, on the n-type energy band slope layer and the quantum wire, and forming a second photoresist layer having a predetermined pattern on the p.sup.+ -GaAs layer; removing the layers laminated on the n-type resistive contact layer using the second photoresist layer patterned thus as an etching mask and then removing the second photoresist layer; and forming an n-type ohmic contact metal on the n-type resistive contact layer and a p-type ohmic contact metal on the p.sup.+ -GaAs layer. By this method, because a quantum well formed near to a quantum wire therein is simultaneously removed during removal of other epitaxial layers, another etching process is not required for removing only the quantum well.
Abstract:
An LED package includes a lead frame, a housing part, and a lead heat dissipating part. The lead frame includes a first lead mounting an LED chip and a second lead spaced apart from the first lead. The housing part covers a portion of the lead frame and includes an opening part for exposing the LED chip, a first side corresponding to a support side contacting the first lead and the second lead, and a second side opposite to the first side. The lead heat dissipating part is extended from the first lead and exposed partially to the first side of the housing part. Herein, the first side of the housing part is thicker than the second side.
Abstract:
Provided is a self-powered solar tracker, which is a solar tracker for adjusting the altitude of and horizontally rotating a solar collector panel such that the solar collector panel on which a plurality of solar cells are provided can face the sun, wherein the self-powered solar tracker comprises: an altitude adjustment optical sensor unit which has one or more first optical sensors formed by being uniformly spaced on the upper side of convex support surfaces to face the sun and one or more second optical sensors formed by being uniformly spaced on the lower side of the convex support surfaces, and which senses the sunlight so as to adjust the altitude of the solar collector panel; a horizontal rotation optical sensor unit which has one or more third optical sensors formed by being uniformly spaced on the left side of the convex support surfaces to face the sun and one or more fourth optical sensors formed by being uniformly spaced on the right side of the convex support surfaces, and which senses sunlight so as to horizontally rotate the solar collector panel; a passive element circuit which has one or more first comparison circuits for comparing the difference in the quantity of output light between the first optical sensors and the second optical sensors and one or more second comparison circuits for comparing the difference in the quantity of output light between the third optical sensors and the fourth optical sensors, and which outputs a driving value for adjusting the altitude of and horizontally rotating the solar collector panel in the direction having a larger light value; an altitude adjustment driving unit for receiving a driving power source from the solar cells of the solar collector panel and for adjusting the altitude of the solar collector panel according to the driving value of the passive element circuit; and a horizontal rotation driving unit for performing the horizontal rotation.
Abstract:
A data equalizing circuit includes an equalizer configured to output data according to a control code; and a detection unit configured to divide the data into N number of calculation periods, count data transition frequencies for the N calculation periods, calculate dispersion values of the data transition frequencies for the N calculation periods, and output the control code corresponding to a largest dispersion value, in response to a counting interruption signal and a counting completion signal, wherein n is equal to or greater than 2, N is greater than n, and the data is divided to n number of unit intervals (UI), andwherein a phase shift of each of the calculation periods with respect to its corresponding UI is different from a phase shift of any of the other calculation periods with respect to its corresponding UI.
Abstract:
A semiconductor apparatus includes a TSV formed to be electrically connected with another chip and a TSV test unit configured to check a capacitance component of the TSV to generate a TSV abnormality signal.