Abstract:
Nonvolatile memory devices, operating methods thereof, and memory systems including the same. A nonvolatile memory device may include a memory cell array and a word line driver. The memory cell array may include a plurality of memory cells. The word line driver may be configured to apply word line voltages to a plurality of word lines connected to the plurality of memory cells, respectively. Magnitudes of the word line voltages may be determined according to locations of the plurality of word lines.
Abstract:
Provided is a method of operating a nonvolatile memory device that includes a substrate and memory blocks having a plurality of memory cells stacked along a direction perpendicular to the substrate. The method includes: reading data from a selected sub block among sub blocks of a selected memory block and selectively refreshing each sub block of the selected memory block in response to the reading of the selected sub block, wherein each sub block of the selected memory block is separately erased.
Abstract:
A vertical memory device includes a channel, a ground selection line (GSL), word lines and a string selection line (SSL). The channel extends in a first direction substantially perpendicular to a top surface of a substrate, and a thickness of the channel is different according to height. The GSL, the word lines and the SSL are sequentially formed on a sidewall of the channel in the first direction and spaced apart from each other.
Abstract:
A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
Abstract:
An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
Abstract:
A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
Abstract:
A vertical non-volatile memory device is structured/fabricated to include a substrate, groups of memory cell strings each having a plurality of memory transistors distributed vertically so that the memory throughout multiple layers on the substrate, integrated word lines coupled to sets of the memory transistors, respectively, and stacks of word select lines. The memory transistors of each set are those transistors, of one group of the memory cell strings, which are disposed in the same layer above the substrate. The word select lines are respectively connected to the integrated word lines.
Abstract:
Provided are semiconductor devices and methods of forming the same. The semiconductor devices include a substrate further including a hydrogen implantation layer and a gate structure formed on the hydrogen implantation layer to include a first insulating layer, a charge storage layer, a second insulating layer and a conductive layer.
Abstract:
A one transistor DRAM device includes: a substrate with an insulating layer, a first semiconductor layer provided on the insulating layer and including a first source region and a first region which are in contact with the insulating layer and a first floating body between the first source region and the first drain region, a first gate pattern to cover the first floating body, a first interlayer dielectric to cover the first gate pattern, a second semiconductor layer provided on the first interlayer dielectric and including a second source region and a second drain region which are in contact with the first interlayer dielectric and a second floating body between the second source region and the second drain region, and a second gate pattern to cover the second floating body.
Abstract:
Methods of forming a NAND-type nonvolatile memory device include: forming first common drains and first common sources alternatively in an active region which is defined in a semiconductor substrate and extends one direction, forming a first insulating layer covering an entire surface of the semiconductor substrate, patterning the first insulating layer to form seed contact holes which are arranged at regular distance and expose the active region, forming a seed contact structure filling each of the seed contact holes and a semiconductor layer disposed on the first insulating layer and contacting the seed contact structures, patterning the semiconductor layer to form a semiconductor pattern which extends in the one direction and is disposed over the active region, forming second common drains and second common sources disposed alternatively in the semiconductor pattern in the one direction, forming a second insulating layer covering an entire surface of the semiconductor substrate, forming a source line pattern continuously penetrating the second insulating layer, the semiconductor pattern and the first insulating layer, the source line pattern being connected with the first and second common sources, wherein a grain boundary of the semiconductor layer is positioned at a center between the one pair of seed contact structures adjacent to each other, and is positioned over the first common drain or the first common source.