Abstract:
A method of forming a semiconductor device is provided including the steps of forming first and second PMOS transistor devices, wherein the first PMOS transistor devices are low, standard or high voltage threshold transistor devices and the second PMOS transistor devices are super high voltage threshold transistor devices, and wherein forming the first PMOS transistor devices includes implanting dopants to form source and drain junctions of the first PMOS transistor devices and performing a thermal anneal of the first PMOS transistor devices after implanting the dopants, and forming the second PMOS transistor devices includes implanting dopants to form source and drain junctions of the second PMOS transistor devices after performing the thermal anneal of the first PMOS transistor devices.
Abstract:
A method for fabricating an integrated circuit includes providing a semiconductor substrate with a pad layer overlying the semiconductor substrate and a photoresist layer overlying the pad layer, exposing the photoresist layer to a split laser beam to form a plurality of parallel linear void regions in the photoresist layer, and etching the pad layer and the semiconductor substrate beneath the plurality of parallel linear void regions to form a plurality of extended parallel linear void regions. The method further includes depositing a first dielectric material over the semiconductor substrate, patterning a photoresist material over the semiconductor substrate to cover a portion of the semiconductor substrate, and etching portions of the pad layer, the first dielectric material, and the semiconductor substrate. Still further, the method includes depositing a second dielectric material into the second void regions.
Abstract:
A known problem when manufacturing transistors is the stress undesirably introduced by the spacers into the transistor channel region. In order to solve this problem, the present invention proposes an ion implantation aimed at relaxing the stress of the spacer materials. The relax implantation is performed after the spacer has been completely formed. The relax implantation may be performed after a silicidation process or after an implantation step in the source and drain regions followed by an activation annealing and before performing the silicidation process.
Abstract:
Storage transistors for flash memory areas in semiconductor devices may be provided on the basis of a self-aligned charge storage region. To this end, a floating spacer element may be provided in some illustrative embodiments, while, in other cases, the charge storage region may be efficiently embedded in the electrode material in a self-aligned manner during a replacement gate approach. Consequently, enhanced bit density may be achieved, since additional sophisticated lithography processes for patterning the charge storage region may no longer be required.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided herein. In an embodiment, a method for fabricating an integrated circuit includes forming over a semiconductor substrate a gate structure. The method further includes depositing a non-conformal spacer material around the gate structure. A protection mask is formed over the non-conformal spacer material. The method etches the non-conformal spacer material and protection mask to form a salicidation spacer. Further, a self-aligned silicide contact is formed adjacent the salicidation spacer.
Abstract:
The present invention relates to a semiconductor structure comprising at least a first and a second three-dimensional transistor, wherein the first transistor and the second transistor are electrically connected in parallel to each other, and wherein each transistor comprises a source and a drain, wherein the source and/or drain of the first transistor is at least partially separated from, respectively, the source and/or drain of the second transistor. The invention further relates to a process for realizing such a semiconductor structure.
Abstract:
A semiconductor structure comprises a substrate and a transistor. The transistor comprises a raised source region and a raised drain region provided above the substrate, one or more elongated semiconductor lines, a gate electrode and a gate insulation layer. The one or more elongated semiconductor lines are connected between the raised source region and the raised drain region, wherein a longitudinal direction of each of the one or more elongated semiconductor lines extends substantially along a horizontal direction that is perpendicular to a thickness direction of the substrate. Each of the elongated semiconductor lines comprises a channel region. The gate electrode extends all around each of the channel regions of the one or more elongated semiconductor lines. The gate insulation layer is provided between each of the one or more elongated semiconductor lines and the gate electrode.
Abstract:
In various aspects, methods of forming a semiconductor device and semiconductor devices are provided. In some illustrative embodiments herein, a silicon/germanium layer is provided on a semiconductor substrate. On the silicon/germanium layer, at least one insulating material layer is formed. After having performed a thermal annealing process, the at least one insulating material layer is removed in subsequent process sequences such that the silicon/germanium layer is at least partially exposed. In further processing sequences which are to be subsequently applied, a gate electrode is formed on the exposed silicon/germanium layer.
Abstract:
In one example, the method includes forming a plurality of isolation structures in a semiconducting substrate that define first and second active regions where first and second transistor devices, respectively, will be formed, forming a hard mask layer on a surface of the substrate above the first and second active regions, wherein the hard mask layer comprises at least one of carbon, fluorine, xenon or germanium ions, performing a first etching process to remove a portion of the hard mask layer and expose a surface of one of the first and second active regions, after performing the first etching process, forming a channel semiconductor material on the surface of the active region that was exposed by the first etching process, and after forming the channel semiconductor material, performing a second etching process to remove remaining portions of the hard mask layer that were not removed during the first etching process.
Abstract:
A method comprises providing a semiconductor structure comprising a substrate, an electrically insulating layer on the substrate and a semiconductor feature on the electrically insulating layer. A gate structure is formed on the semiconductor feature. An in situ doped semiconductor material is deposited on portions of the semiconductor feature adjacent the gate structure. Dopant is diffused from the in situ doped semiconductor material into the portions of the semiconductor feature adjacent the gate structure, the diffusion of the dopant into the portions of the semiconductor feature adjacent the gate structure forming doped source and drain regions in the semiconductor feature.