摘要:
The invention relates to a semiconductor device and a method for manufacturing such a semiconductor device. A semiconductor device according to an embodiment of the invention may comprise: a substrate; a device region located on the substrate; and at least one stress introduction region separated from the device region by an isolation structure, with stress introduced into at least a portion of the at least one stress introduction region, wherein the stress introduced into the at least a portion of the at least one stress introduction region is produced by utilizing laser to illuminate an amorphized portion comprised in the at least one stress introduction region to recrystallize the amorphized portion. The semiconductor device according to an embodiment of the invention produces stress in a simpler manner and thereby improves the performance of the device.
摘要:
Vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with vertical stacks of a metal portion and a semiconductor portion formed on a second substrate. Alternately, vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with metal portions formed on a second substrate. The assembly of the first and second substrates is subjected to an anneal at a temperature that induces formation of a metal semiconductor alloy derived from the semiconductor portions and the metal portions. The first substrate and the second substrate are bonded through metal semiconductor alloy portions that adhere to the first and second substrates.
摘要:
A flash memory device includes a semiconductor substrate, a gate stack formed on the semiconductor substrate; a channel region below the gate stack; spacers outside the gate stack; and source/drain regions outside the channel region and in the semiconductor substrate, in which the gate stack includes a first gate dielectric layer on the channel region; a first conductive layer covering an upper surface of the first gate dielectric layer and inner walls of the spacers; a second gate dielectric layer covering a surface of the first conductive layer; and a second conductive layer covering a surface of the second gate dielectric layer. A method for manufacturing a flash memory device disclosed herein.
摘要:
A well region formation method and a semiconductor base in the field of semiconductor technology are provided. A method comprises: forming isolation regions in a semiconductor substrate to isolate active regions; selecting at least one of the active regions, and forming a first well region in the selected active region; forming a mask to cover the selected active region, and etching the rest of the active regions, so as to form grooves; and growing a semiconductor material by epitaxy to fill the grooves. Another method comprises: forming isolation regions in a semiconductor substrate for isolating active regions; forming well regions in the active regions; etching the active regions to form grooves, such that the grooves have a depth less than or equal to a depth of the well regions; and growing a semiconductor material by epitaxy to fill the grooves.
摘要:
The present invention provides a method for manufacturing a semiconductor structure. The method comprises: providing an SOI substrate and forming a gate structure on said SOI substrate; etching a SOI layer and a BOX layer of the SOI substrate on both sides of the gate structure to form a trench exposing the BOX layer, said trench partially entering into the BOX layer; forming a stressed layer that fills up a part of said trench; forming a semiconductor layer covering the stressed layer in the trench. Correspondingly, the present invention also provides a semiconductor structure formed by the above method. In the semiconductor structure and the method for manufacturing the same according to the present invention, a trench is formed on an ultrathin SOI substrate, first filled with a stressed layer, and then filled with a semiconductor material to be ready for forming a source/drain region. The stressed layer provides a favorable stress to the channel of the semiconductor device, thus facilitating improving the performance of the semiconductor device.
摘要:
The present disclosure discloses a method for manufacturing an N-type MOSFET, comprising: forming a part of the MOSFET on a semiconductor substrate, the part of the MOSFET comprising source/drain regions in the semiconductor substrate, a replacement gate stack between the source/drain regions above the semiconductor substrate, and a gate spacer surrounding the replacement gate stack; removing the replacement gate stack of the MOSFET to form a gate opening exposing a surface of the semiconductor substrate; forming an interface oxide layer on the exposed surface of the semiconductor; forming a high-K gate dielectric layer on the interface oxide layer in the gate opening; forming a first metal gate layer on the high-K gate dielectric layer; implanting dopant ions into the first metal gate layer; and performing annealing to cause the dopant ions to diffuse and accumulate at an upper interface between the high-K gate dielectric layer and the first metal gate layer and a lower interface between the high-K gate dielectric layer and the interface oxide layer, and also to generate electric dipoles by interfacial reaction at the lower interface between the high-K gate dielectric layer and the interface oxide layer.
摘要:
A semiconductor structure and a method for manufacturing the same are disclosed. The method comprises: disposing a first dielectric material layer on a first semiconductor layer and defining openings in the first dielectric material layer; epitaxially growing a second semiconductor layer on the first semiconductor layer via the openings defined in the first dielectric material layer, wherein the second semiconductor layer and the first semiconductor layer comprise different materials from each other; and forming plugs of a second dielectric material in the second semiconductor layer at positions where the openings are defined in the first dielectric material layer and also at middle positions between adjacent openings. According to embodiments of the disclosure, defects occurring during the heteroepitaxial growth can be effectively suppressed.
摘要:
A method for making FinFETs and semiconductor structures formed therefrom is disclosed, comprising: providing a SiGe layer on a Si semiconductor substrate and a Si layer on the SiGe layer, wherein the lattice constant of the SiGe layer matches that of the substrate; patterning the Si layer and the SiGe layer to form a Fin structure; forming a gate stack on top and both sides of the Fin structure and a spacer surrounding the gate stack; removing a portion of the Si layer which is outside the spacer with the spacer as a mask, while keeping a portion of the Si layer which is inside the spacer; removing a portion of the SiGe layer which is kept after the patterning, to form a void; forming an insulator in the void; and epitaxially growing stressed source and drain regions on both sides of the Fin structure and the insulator.
摘要:
A solar cell includes a substrate having an N-region and a P-region, a first anti-reflective layer disposed on the substrate, a metallic contact disposed on the first anti-reflective layer, a second anti-reflective layer disposed on the first anti-reflective layer and the metallic contact, and a region partially defined by the first anti-reflective layer and the second anti-reflective layer having diffused metallic contact material operative to form a conductive path to the substrate through the first anti-reflective layer, the metallic contact, and the second anti-reflective layer.
摘要:
The present application discloses a semiconductor device comprising a fin of semiconductive material formed from a semiconductor layer over a semiconductor substrate and having two opposing sides perpendicular to the main surface of the semiconductor substrate; a source region and a drain region provided in the semiconductor substrate adjacent to two ends of the fin and being bridged by the fin; a channel region provided at the central portion of the fin; and a stack of gate dielectric and gate conductor provided at one side of the fin, where the gate conductor is isolated from the channel region by the gate dielectric, and wherein the stack of gate dielectric and gate conductor extends away from the one side of the fin in a direction parallel to the main surface of the semiconductor substrate, and insulated from the semiconductor substrate by an insulating layer. The semiconductor device has an improved short channel effect and a reduced parasitic capacitance and resistance, which contributes to an improved electrical property and facilitates scaling down of the transistor.