摘要:
In an electrochemical reactor used for electrochemical treatment of a substrate, for example, for electroplating or electropolishing the substrate, one or more of the surface area of a field-shaping shield, the shield's distance between the anode and cathode, and the shield's angular orientation is varied during electrochemical treatment to screen the applied field and to compensate for potential drop along the radius of a wafer. The shield establishes an inverse potential drop in the electrolytic fluid to overcome the resistance of a thin film of conductive metal on the wafer.
摘要:
A wafer chuck includes alignment members that allows a semiconductor wafer to be properly aligned on the chuck without using a separate alignment stage. The alignment members may be cams, for example, attached to arms of the wafer chuck. These members may assume an alignment position when a robot arm places the wafer on the chuck. In this position, they guide the wafer into a proper alignment position with respect to the chuck. During rotation at a particular rotational speed, the alignment members move away from the wafer to allow liquid etchant to flow over the entire edge region of the wafer. At still higher rotational speeds, the wafer is clamped into position to prevent it from flying off the chuck. A clamping cam or other device (such as the alignment member itself) may provide the clamping.
摘要:
A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. The current of a plating cell is provided from an azimuthally asymmetric anode, which is rotated with respect to the work piece (i.e., either or both of the work piece and the anode may be rotating). The azimuthal asymmetry provides a time-of-exposure correction to the current distribution reaching the work piece, whereby peripheral regions of the work piece see less current than central regions over the period of rotation. In some embodiments, the total current is distributed among a plurality of anodes in the plating cell in order to tailor the current distribution in the plating electrolyte over time. Focusing elements may be used to create “virtual anodes” in proximity to the plating surface of the work piece to further control the current distribution in the electrolyte during plating.
摘要:
An electroplating system includes (a) a phosphorized anode having an average grain size of at least about 50 micrometers and (b) plating apparatus that separates the anode from the cathode and prevents most particles generated at the anode from passing to the cathode. The separation may be accomplished by interposing a microporous chemical transport barrier between the anode and cathode. The relatively few particles that are generated at the large grain phosphorized copper anode are prevented from passing into the cathode (wafer) chamber area and thereby causing a defect in the part.
摘要:
Methods and apparatus for reducing heat load and air exposure when using an electroless plating fluid during a plating process, are presented. An electroless plating apparatus, including an electroless plating vessel and recirculation systems, is presented. The electroless plating vessel minimizes air exposure (and thus evaporative cooling and degradation) of the electroless plating fluid while the recirculation systems minimize heat load of the electroless plating fluid.
摘要:
Disclosed is a procedure for deposition of a thin and relatively continuous electroless copper film on the substrate of sub-micron integrated circuit features. The electroless copper film is deposited onto a previously deposited PVD copper film, which may be discontinuous. The continuous film formed by electroless deposition allows for sufficient filling of the sub-micron integrated circuit features by electrodeposition. The electroless bath employed to form the continuous electroless copper film may be composed of a reducing agent, a complexing agent, a source of copper ions, a pH adjuster, and optionally one or more surfactants and/or stabilizers. In one example, the reducing agent contains an aldehyde moiety.
摘要:
A disclosed electroplanarization process involves “masking” certain regions of a wafer surface during electropolishing. The regions chosen for masking are features of relatively low aspect ratio (i.e., features that are wider than they are deep). The masking is accomplished with a material of relatively low ionic conductivity, which effectively slows or blocks transport of the metal ions produced during electropolishing. Examples of masking materials include concentrated phosphoric acid and certain polymers.
摘要:
Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems apply liquid etchant in a precise manner at the edge bevel region of the wafer under viscous flow conditions, so that the etchant is applied on to the front edge area and flows over the side edge and onto the back edge in a viscous manner. The etchant thus does not flow or splatter onto the active circuit region of the wafer.
摘要:
Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.
摘要:
A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.