摘要:
A light emitting module includes a semiconductor light emitting element disposed on a rectangular board, and a pair of plane-shaped electrode portions formed on the board and coupled to the semiconductor light emitting element. The pair of plane-shaped electrode portions is separated in first opposite directions, and a center of the semiconductor light emitting element is shifted from a center of the board in one of second opposite directions. End faces of the pair of plane-shaped electrode portions do not protrude in the one of the second opposite directions from an end face of the semiconductor light emitting element on a side facing toward the one of the second opposite directions. The first opposite directions are directions along which one pair of opposite sides of the board extend, and the second opposite directions are directions along which the other pair of opposite sides of the board extend.
摘要:
An object of the present invention is to provide a method for producing a gallium nitride-based compound semiconductor multilayer structure useful for the production of a gallium nitride-based compound semiconductor light-emitting device which can ensure that the operating voltage is reduced, the light emission output is good and the light emission output is less changed due to aging.The inventive production method of a gallium nitride-based compound semiconductor multilayer structure comprises a substrate having thereon an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer, the light-emitting layer being disposed between the n-type semiconductor layer and the p-type semiconductor layer, and the light-emitting layer having a multiple quantum well structure formed by alternately stacking a well layer and a barrier layer, wherein at least one well layer has a non-uniform thickness, at least a part of the barrier layer is grown at a higher temperature than the well layer, and the temperature difference between each growth temperature of the well layer, the barrier layer and the p-type semiconductor layer is adjusted to be in a specific range.
摘要:
An n-type Group III nitride semiconductor stacked layer structure including a first n-type layer which includes a layer containing n-type impurity atoms at a high concentration and a layer containing n-type impurity atoms at a low concentration, a second n-type layer containing n-type impurity atoms at an average concentration smaller than that of the first n-type layer, the second n-type layer neighboring the layer containing n-type impurity atoms at a low concentration in the first n-type layer.
摘要:
A light-emitting device (2) including a light-emitting element (2a), a first phosphor (2b), and a second phosphor (2c). The light-emitting element (2a) emits light L1 having a wavelength range within the visible region. Upon receipt of the light L1, or light L3 originating from the second phosphor (2c), the first phosphor (2b) emits light L2 having a wavelength range, which differs from that of the first light L1 and the third light L3, but falls within the visible region. Upon receipt of a specific wavelength component (ultraviolet light, or the like) included in external light, the second phosphor (2c) generates the light L3 whose wavelength range is substantially the same as that of the light L1, thereby radiating the first phosphor (2b) with the light L3.
摘要:
A Group III nitride semiconductor light emitting device having a light emitting layer (6) bonded to a crystal layer composed of an n-type or p-type Group III nitride semiconductor, the Group III nitride semiconductor light emitting device being characterized by comprising an n-type Group III nitride semiconductor layer (4) having germanium (Ge) added thereto and having a resistivity of 1×10−1 to 1×10−3 Ωcm. The invention provides a Ge-doped n-type Group III nitride semiconductor layer with low resistance and excellent flatness, in order to obtain a Group III nitride semiconductor light emitting device exhibiting low forward voltage and excellent light emitting efficiency.
摘要:
A higher voltage out of a battery voltage applied to an ignition voltage terminal or a control voltage applied to a control voltage terminal is supplied to a switching regulator via a diode. Then, a supply of current to an LED in the switching regulator is controlled in compliance with the control voltage while using an input voltage as energy. When a PWM signal is input into a control voltage terminal as the control voltage, transistors are turned off and on, whereby an instruction to turn on the LED in a dimmed lighting mode is issued to the switching regulator. Then, a current that is smaller than that supplied in a full lighting mode is supplied to the LED.
摘要:
A light source module for generating light, including a semiconductor light-emitting element, nano-particles having a diameter smaller than half the wavelength of light generated by the light source module, a fluorescent substance for generating visible light in accordance with light generated by the semiconductor light-emitting element, and a binder formed stratiformly for covering a light-emitting surface of the semiconductor light-emitting element to hold the nano-particles and the fluorescent substance, wherein the refractive index of the nano-particles is higher than the refractive index of the binder.
摘要:
A power supply device includes: a regulator transformer; a primary switch for selectively supplying a current to the regulator transformer; a control circuit for reducing to 0, following each election made at the primary switch, the minimum value of a current output by the secondary side of the regulator transformer; and a coupling transformer for magnetically coupling routes along which a plurality of loads are connected in parallel to the secondary side of the regulator translator in a direction in which magnetic flux along each of the routes is offset by a current change. In this case, the control circuit increases the maximum value of the output current on the secondary side larger than twice of the target value of the current supplied to the loads.
摘要:
A lighting controller for a lighting device for a vehicle includes a semiconductor light source; a power source for supplying electric power; and control circuitry for receiving the electric power from the power source and controlling a current supplied to the semiconductor light source. The control circuitry determines an amount of time the semiconductor light source is in a turned on state and an amount of time the semiconductor light source is in a turned off state. The control circuitry controls a value of the current supplied to the semiconductor light source based on both the determined amount of time the semiconductor light source is in a turned on state and the determined amount of time the semiconductor light source is in a turned off state. A method of controlling a lighting device for a vehicle includes receiving electric power from a power source; supplying a current to a semiconductor light source, determining an amount of time the semiconductor light source is in a turned on state and an amount of time the semiconductor light source is in a turned off state, and controlling a value of the current supplied to the semiconductor light source based on both the determined amount of time the semiconductor light source is in a turned on state and the determined amount of time the semiconductor light source is in a turned off state.
摘要:
There is provided a vehicular lamp that can inform walkers or drivers in the other vehicles of the existence of the moving vehicle even where the circumference of the vehicle is bright by emitting a light amount larger than that of normal times when the circumference is bright. The vehicular lamp that is used for a vehicle includes a semiconductor light-emitting element, and a current controlling unit operable to increase an electric current flowing into the semiconductor light-emitting element according to a signal output from a sensor depending on a brightness of the circumference of the vehicle when the circumference of the vehicle is bright.