Abstract:
RF multiplexer circuitry includes a first signal path coupled between a first intermediate node and a common node, a second signal path coupled between a second intermediate node and the common node, first resonator circuitry coupled between the first signal path and ground, and second resonator circuitry coupled between the second signal path and ground. The first resonator circuitry is configured to allow signals within a first frequency pass band to pass between the first intermediate node and the common node, while attenuating signals outside of the first frequency pass band. The first resonator circuitry includes a first LC resonator. The second resonator circuitry is configured to allow signals within a second frequency pass band to pass between the second intermediate node and the common node, while attenuating signals outside of the second frequency pass band.
Abstract:
Circuitry includes a floating-body main field-effect transistor (FET) device, a body-contacted cascode FET device, and biasing circuitry coupled to the floating-body main FET device and the body-contacted cascode FET device. The floating-body main FET device includes a gate contact, a drain contact, and a source contact. The body-contacted cascode FET device includes a gate contact, a drain contact coupled to a supply voltage, and a source contact coupled to the drain contact of the floating-body main FET device and to a body region of the body-contacted cascode FET device. The biasing circuitry is coupled to the gate contact of the floating-body main FET device and the gate contact of the body-contacted cascode FET device and configured to provide biasing signals to the floating-body main FET device and the body-contacted cascode FET device such that a majority of the supply voltage is provided across the body-contacted cascode FET device.
Abstract:
Antenna aperture tuning circuitry includes a first signal path and a second signal path coupled in parallel between an antenna radiating element and ground. A first LC resonator and a second LC resonator are each coupled between the first signal path and ground. The first LC resonator and the second LC resonator are electromagnetically coupled such that a coupling factor between the first LC resonator and the second LC resonator is between about 1.0% and 40.0%. A third LC resonator and a fourth LC resonator are each coupled between the second signal path and ground. The third LC resonator and the fourth LC resonator are electromagnetically coupled such that a coupling factor between the third LC resonator and the fourth LC resonator is between about 1.0% and 40.0%.
Abstract:
A resonator includes an inductive element and a conductive cavity surrounding the inductive element. In particular, the conductive cavity surrounds the inductive element such that a capacitance is distributed between the inductive element and the conductive cavity. By distributing a capacitance between the inductive element and the conductive cavity, a high quality-factor resonator can be achieved by the resonator with a relatively small form factor.
Abstract:
The present disclosure provides a vertical inductor structure in which the magnetic field is closed such that the magnetic field of the vertical inductor structure is cancelled in the design direction outside the vertical inductor structure, yielding a small, or substantially zero, coupling factor of the vertical inductor structure. In one embodiment, several vertical inductor structures of the present disclosure can be placed in close proximity to create small resonant circuits and filter chains.
Abstract:
Embodiments of radio frequency (RF) switching circuitry are disclosed that include (at least) a first switch and a body switching network operably associated with the first switch. The first switch has a first control contact, a first switch contact and a first body contact. The body switching network includes a first switchable path and a second switchable path. The first switchable path is connected between the first body contact and the first control contact of the first switch. Additionally, the second switchable path is connected between the first body contact and the first switch contact. Accordingly, the first body contact is can be appropriately biased by the switchable paths without requiring a resistor network and thus there is less loading. This maintains the Q factor of the RF switching circuitry.
Abstract:
RF PA circuitry includes an amplifier stage, gain compensation circuitry, and an adder. The amplifier stage is configured to receive and amplify an RF input signal to provide an RF output signal. The gain compensation circuitry is coupled in parallel with the amplifier stage and configured to receive the RF input signal and provide a gain compensation signal, wherein the gain compensation signal is configured to linearize at least a portion of the gain response of the amplifier stage or the RF PA circuitry in general. The adder is coupled between an output of the amplifier stage and the gain compensation stage and is configured to receive and add the RF output signal and the gain compensation signal to provide a linearized RF output signal.
Abstract:
Radio frequency power amplifier circuitry includes an amplifier element, power supply modulation circuitry, and bias modulation circuitry. The amplifier element is configured to amplify an RF input signal using a modulated power supply signal and a modulated bias signal to produce an RF output signal. The power supply modulation circuitry is coupled to the amplifier element and configured to provide the modulated power supply signal. The bias modulation circuitry is coupled to the amplifier element and the power supply modulation circuitry and configured to receive the modulated power supply signal and provide the modulated bias signal. Notably, the modulated bias signal is a function of the modulated power supply signal such that the modulated bias signal is configured to maintain a small signal gain of the amplifier element and the phase of the RF input signal at a constant value as the modulated power supply signal changes.
Abstract:
Embodiments of radio frequency (RF) switching circuitry are disclosed that include (at least) a first switch and a body switching network operably associated with the first switch. The first switch has a first control contact, a first switch contact and a first body contact. The body switching network includes a first switchable path and a second switchable path. The first switchable path is connected between the first body contact and the first control contact of the first switch. Additionally, the second switchable path is connected between the first body contact and the first switch contact. Accordingly, the first body contact is can be appropriately biased by the switchable paths without requiring a resistor network and thus there is less loading. This maintains the Q factor of the RF switching circuitry.
Abstract:
RF communications circuitry, which includes a first RF filter structure, is disclosed. The first RF filter structure includes a first tunable RF filter path and a second tunable RF filter path. The first tunable RF filter path includes a pair of weakly coupled resonators. Additionally, a first filter parameter of the first tunable RF filter path is tuned based on a first filter control signal. A first filter parameter of the second tunable RF filter path is tuned based on a second filter control signal.