摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the same. The method for manufacturing the semiconductor device, among other steps, includes forming a gate structure (230) over a substrate (210) and forming at least a portion of source/drain regions in the substrate (210). The method further includes annealing the substrate containing the at least a portion of source/drain regions in the presence of hydrogen, and forming an interlevel dielectric layer over the substrate (210) having previously been annealed in the presence of hydrogen.
摘要:
A silicon nitrate layer (110) is formed over a transistor gate (40) and source and drain regions (70). The as-formed silicon nitride layer (110) comprises a first tensile stress and a high hydrogen concentration. The as-formed silicon nitride layer (110) is thermally annealed converting the first tensile stress into a second tensile stress that is larger than the first tensile stress. Following the thermal anneal, the hydrogen concentration in the silicon nitride layer (110) is greater than 12 atomic percent.
摘要:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
摘要:
The present application is directed to a method for forming a metal silicide layer. The method comprises providing a substrate comprising silicon and depositing a metal layer on the substrate. The metal layer is annealed within a first temperature range and for a first dwell time of about 10 milliseconds or less to react at least a portion of the metal with the silicon to form a silicide. An unreacted portion of the metal is removed from the substrate. The silicide is annealed within a second temperature range for a second dwell time of about 10 milliseconds or less.
摘要:
A MOS transistor structure comprising a gate dielectric layer (30), a gate electrode (40), and source and drain regions (70) are formed in a semiconductor substrate (10). First second and third dielectric layers (110), (120), and (130) are formed over the MOS transistor structure. The second and third dielectric structures (120), (130) are removed leaving a MOS transistor with a stressed channel region resulting in improved channel mobility characteristics.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the semiconductor device. The method for manufacturing the semiconductor device (100), among other possible steps, includes forming a polysilicon gate electrode over a substrate (110) and forming source/drain regions (170) in the substrate (110) proximate the polysilicon gate electrode. The method further includes forming a blocking layer (180) over the source/drain regions (170), the blocking layer (180) comprising a metal silicide, and siliciding the polysilicon gate electrode to form a silicided gate electrode (150).
摘要:
A method of manufacturing a semiconductor device comprising removing a first oxide layer deposited over a semiconductor substrate, thereby exposing source and drain regions of the substrate. The first oxide layer is configured as an etch-stop for forming silicon nitride sidewall spacers of a gate structure located adjacent to the source and drain regions. The method further comprises depositing a second oxide layer selectively on the exposed source and drain regions and then removing lateral segments of the silicon nitride sidewall spacers.
摘要:
A silicon nitrate layer (110) is formed over a transistor gate (40) and source and drain regions (70). The as-formed silicon nitride layer (110) comprises a first tensile stress and a high hydrogen concentration. The as-formed silicon nitride layer (110) is thermally annealed converting the first tensile stress into a second tensile stress that is larger than the first tensile stress. Following the thermal anneal, the hydrogen concentration in the silicon nitride layer (110) is greater than 12 atomic percent.
摘要:
The present invention provides a method for manufacturing a semiconductor device, a semiconductor device, and a method for manufacturing an integrated circuit including a semiconductor device. The method for manufacturing the semiconductor device, without limitation, may include providing a gate dielectric layer (413, 423) and a gate electrode layer (418, 428) over a substrate (310), and forming a gate sidewall spacer (610, 630) along one or more sidewalls of the gate dielectric layer (413, 423) and the gate electrode layer (418, 428) using a plasma enhanced chemical vapor deposition process, and forming different hydrogen concentration in NMOS and PMOS sidewall spacers (610, 630) using a local hydrogen treatment (LHT) method.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefor, and a method for manufacturing an integrated circuit. The semiconductor device (100), among other possible elements, includes a silicided gate electrode (150) located over a substrate (110), the silicided gate electrode (150) having gate sidewall spacers (160) located on sidewalls thereof. The semiconductor device (100) further includes source/drain regions (170) located in the substrate (110) proximate the silicided gate electrode (150), and silicided source/drain regions (180) located in the source/drain regions (170) and at least partially under the gate sidewall spacers (160).