摘要:
A method for producing a thin-film transistor (TFT) in which the gate electrode is offset from the source and drain without detriment to the characteristics of the device or to manufacturing yield, and a structure for such a TFT, are disclosed. A gate electrode is formed using a material capable of anodic oxidation, and a mask is formed on the gate electrode. Using a comparatively low voltage, a comparatively thick, porous anodic oxide film is formed on the sides of the gate electrode. The mask is then removed and using a comparatively high voltage a dense anodic oxide film is formed at least on the top of the gate electrode. Using the gate electrode having this anodic oxide on its top and sides as a mask, an impurity is introduced into the semiconductor film and an offset structure is obtained.
摘要:
A thin film transistor comprising a gate electrode offset from source and drain, which comprises a substrate having thereon a gate electrode fabricated on an active region provided on the substrate, wherein, an anodic oxide of the material constituting the gate electrode is provided on the side and the upper face of said gate electrode, and the anodic oxide on the side of the gate electrode is formed thicker than the anodic oxide formed on the upper face. Also claimed is a process for fabricating the above thin film transistor improved in device characteristics and product yield, which comprises forming a gate electrode with an anodically oxidizable material having thereon a masking material, providing a relatively thick porous anodic oxide film on the side of the gate electrode by anodic oxidation effected under a relatively low voltage, then forming a dense anodic oxide film on at least the upper face of the gate electrode after removing the masking material, and introducing impurities into the semiconductor layer using the gate electrode portion having thereon the anodic oxide films as a mask.
摘要:
A thin film transistor according to this invention has a gate electrode comprising a lower layer of aluminum of a high purity of over 99.5% and an upper layer of aluminum containing over 0.5% silicon. Alternatively, it has a gate electrode made by adding a IIIa group element to a IIIb group element. Residues produced by the etching of the silicon-containing aluminum gate electrode are etched with a mixture solution of hydrofluoric acid, nitric acid and acetic acid. After contact holes have been formed in an interlayer insulating film, laser annealing is carried out, and metal electrodes are formed in the contact holes thereafter.
摘要:
Copper-based alloys suitable for use as materials in fabricating electric and electronic parts as typified by leadframes and having high strength and high electric conductivity can be produced by a process which comprises the steps of preparing a copper-based alloy consisting essentially of 0.01- 3.0 wt % Co and 0.01- 0.5 wt % P with the balance being Cu and incidental impurities, quenching said alloy from a temperature not lower than 750.degree. C. down to 450.degree. C. and below at a cooling rate of at least 1.degree. C./sec, heat treating the quenched alloy at a temperature of 480.degree.-600.degree. C. for 30-600 minutes, cold working said alloy for a working ratio of 20-80%, further heat treating the alloy at a temperature of 440.degree.-470.degree. C. for 30-600 minutes, and subsequently performing cold working for a working ratio of at least 50% and heat treatment at 380.degree. C. and below.
摘要:
A laser scribing method is described. A laser beam is deprived of its tail which appears along a groove which is engraved by scribing. The scribing can be performed without forming protrusion along the edge of grooves engraved by the scribing. The depriving of the tail is accomplished by coating the film with a buffer film which is removed after the scribing.
摘要:
A copper alloy sheet has a chemical composition containing 0.1 to 5 wt % of nickel, 0.1 to 5 wt % of tin, 0.01 to 0.5 wt % of phosphorus and the balance being copper and unavoidable impurities, and has a crystal orientation satisfying 2.9≦(f{220}+f{311)+f{420})/(0.27·f{220}+0.49·f{311}+0.49·f{420}) 4.0, assuming that the degree of orientation of a {hkl} crystal plane measured by the powder X-ray diffraction method on the rolled surface of the copper alloy sheet is f{hkl}.
摘要翻译:铜合金板具有含有镍的0.1〜5重量%,锡0.1〜5重量%,磷0.01〜0.5重量%,铜和余量为不可避免的杂质的结晶取向的化学组成,其结晶取向为2.9< (f {220} + f {311)+ f {420})/(0.27·f {220} + 0.49·f {311} + 0.49·f {420})4.0,假设{ 通过粉末X射线衍射法在铜合金板的轧制表面上测得的hkl}晶面为f {hkl}。
摘要:
A sheet material of a copper alloy has a chemical composition including 1.2 to 5.0 wt % of titanium, and the balance being copper and unavoidable impurities, the material having a mean crystal grain size of 5 to 25 μm and (maximum crystal grain size−minimum crystal grain size)/(mean crystal grain size) being 0.20 or less, and the material having a crystal orientation satisfying I{420}/I0{420}>1.0, assuming that the intensities of X-ray diffraction on the {420} crystal plane of the surface of the material and the standard powder of pure copper are I{420} and I0{420}, respectively.
摘要:
After a molten metal of aluminum or an aluminum alloy having a temperature, which is higher than the liquidus line temperature of aluminum or the aluminum alloy by 5 to 200° C., is injected into a mold, when the mold is cooled to solidify the molten metal, the molten metal injected into the mold is pressurized at a pressure of 1.0 to 100 kPa from a high-temperature side to a low-temperature side, and the mean cooling rate is set to be 5 to 100° C./minute while the mold is cooled from the liquidus line temperature to 450° C., the temperature gradient formed in the mold being set to be in the range of from 1° C./cm to 50° C./cm.
摘要:
A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.