摘要:
A camera assembly (3) for use in medical tracking applications, comprising a range camera (4) and a thermographic camera (5) in a fixed relative position.
摘要:
A wearable device for use with a smart phone or tablet includes a measurement device having a plurality of LEDs generating a near-infrared input optical beam that measures physiological parameters. The measurement device includes lenses configured to receive and to deliver the input beam to skin which reflects the beam. The measurement device includes a reflective surface configured to receive and redirect the light from the skin, and a receiver configured to receive the reflected beam. The light source is configured to increase a signal-to-noise ratio of the input beam reflected from the skin by increasing the light intensity from the LEDs and modulation of the LEDs. The measurement device is configured to generate an output signal representing a non-invasive measurement on blood contained within the skin. The wearable device is configured to wirelessly communicate with the smart phone or tablet which receives and processes the output signal.
摘要:
A measurement system includes semiconductor light sources generating an input beam, optical amplifiers receiving the input beam and delivering an intermediate beam, and fused silica fibers with core diameters less than 400 microns receiving and delivering the intermediate beam to the fibers forming a first optical beam. A nonlinear element receives the first optical beam and broadens the spectrum to at least 10 nm through a nonlinear effect to form the output optical beam which includes a near-infrared wavelength of 700-2500 nm. A measurement apparatus is configured to receive the output optical beam and deliver it to a sample to generate a spectroscopy output beam. A receiver receives the spectroscopy output beam having a bandwidth of at least 10 nm and processes the beam to generate an output signal, wherein the light source and the receiver are remote from the sample, and wherein the sample comprises plastics or food industry goods.
摘要:
Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
摘要:
What is disclosed is a system and method for generating a respiration gating signal from a video of a subject for gating diagnostic imaging and therapeutic delivery applications which require respiration phase and/or respiration amplitude gating. One embodiment involves receiving a video of a subject and generating a plurality of time-series signals from the video image frames. A set of features are extracted from the time-series signals and multi-dimensional feature vectors are formed. The feature vectors are clustered. Time-series signals corresponding in each of the clusters are averaged in a temporal direction to obtain a representative signal for each cluster. One cluster is selected and a respiration gating signal is generated from that cluster's representative signal. Thereafter, the respiration gating signal is used to gate diagnostic imaging and therapeutic delivery applications which requires gating based on a threshold set with respect to either respiration phase or respiration amplitude.
摘要:
In an embodiment, the present invention is an apparatus, comprising: a foot mat; a depth sensing camera; an elevated foot platform that reduces or prevents rotational movement of a foot; a processor in communication with the depth sensing camera, the processor further configured to calculate the circumference of a user's leg based on data from the depth sensing camera while the user has one foot on the foot mat and one foot on the elevated foot platform, the processor further configured to select a recommended product for the user's knee or ankle from among a set of pre-manufactured candidate products for knees or ankles based at least in part upon the leg circumference of the user; and an output device to display information received from the processor, the information identifying the recommended product to the user.
摘要:
Disclosed is a medical image processing device for generating an image in which a difference in color between an abnormal part where a gastric mucosa is atrophied, and a normal part is enhanced.A B/G ratio is determined from B and G image signals, and a G/R ratio is determined from the G and R image signals. In a feature space formed from the B/G ratio and the G/R ratio, first processing is performed for moving the coordinates of a second range to a reference range including the origin in a state where the coordinates of first and third ranges are maintained. In order to make the first range and the third range distant from each other, second processing is performed for moving the first and third ranges. A first special image is generated based on the B/G ratio and the G/R ratio after the first and second processing.
摘要:
Described herein are systems and methods for extracting image features from magnetic resonance imaging scans. These methods and systems are useful for both determining cancer lesion severity and disease prognosis. In particular, methods and systems are provided herein for extracting and analyzing imaging features that are correlated with breast cancer subtype and prognosis.
摘要:
The present invention relates to methods for an objective and quantitative erythema documentation and analysis. In particular, the invention relates to a method for assessing erythema of a subject comprising the steps of measuring the light reflectance of a skin or mucosal area of the subject, obtaining the L* value and the a* value of said measurement according to the L*a*b* color space, and calculating the erythema value according to the formula (L*max−L*)×a*.
摘要翻译:本发明涉及客观和定量红斑记录和分析的方法。 具体而言,本发明涉及一种用于评估受试者的红斑的方法,包括以下步骤:测量受试者的皮肤或粘膜区域的光反射率,根据L获得所述测量的L *值和a *值 * a * b *颜色空间,并根据公式(L * max-L *)×a *计算红斑值。
摘要:
A method of processing magnetic resonance (MR) lung images creates a quantitative ventilation map of the lung, which is calculated from ventilation images. A step of determining ventilation frequency includes a frequency analysis of a time series of a quantitative lung dimension parameter which is characteristic for the dimension of the lung at the time of collecting the corresponding MR lung image. Creation of the quantitative ventilation map includes selecting a first group of ventilation images, which consists of expiration ventilation images collected at regular expiration phases of multiple ventilation periods, and a second group of ventilation images, which consists of inspiration ventilation images collected at regular inspiration phases of the multiple ventilation periods, and calculating the quantitative ventilation map from the first and second groups of ventilation images, wherein the quantitative ventilation map is adjusted with reference to the tidal volume of the lung.