Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. incorporating a composition made of rubber in the uncrosslinked state referred to as “filling rubber”, the said cable comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a first sheathing step in which the core (C1) is sheathed with the filling rubber; a first assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named “core strand” (C1+C2); downstream of the said assembling point, a second sheathing step in which the core strand (C1+C2) is sheathed with the filling rubber; a second assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2) thus sheathed; a final twist-balancing step.
Abstract:
In order to provide a double rustproof PC strand with superior durability and semi-permanent rustproof performance, a core wire and surrounding wires are formed of wires subjected to a wire drawing treatment and a plating treatment and formed with a plated layer, and a rustproof treatment is applied by forming a synthetic resin coat on an outer peripheral surface thereof. In order to uniformize and regulate the twisting pitch, the core wire and the surrounding wires are adjusted under the conditions of (A) Diameter of CORE: 4.42±0.05 mm, Diameter of Surrounding wire: 4.25±0.05 mm, (B) Diameter of CORE: 5.22±0.05 mm, Diameter of Surrounding wire: 5.06±0.05 mm, or (C) Diameter of CORE: 5.40±0.05 mm, Diameter of Surrounding wire: 5.25±0.05 mm, and then twisted, and the tensile strength is 1850 N/mm2 or higher.
Abstract translation:为了提供具有优异的耐久性和半永久性防锈性能的双重防锈PC绞线,芯线和周围的线由经过拉丝处理和电镀处理的电线形成,并且形成有镀层,并且防锈处理 通过在其外周面上形成合成树脂涂层来施加。 为了使捻距均匀化和调节,在(A)直径CORE为4.42±0.05mm,周围线直径为4.25±0.05mm的条件下,对芯线和周围线进行调整,(B)直径 核心:5.22±0.05mm,周围线直径:5.06±0.05mm,或(C)直径CORE:5.40±0.05mm,周围线直径:5.25±0.05mm,扭转,拉伸强度为1850 N / mm2以上。
Abstract:
A method for manufacturing a component includes a step of providing at least one metallic element. A surface of the at least one metallic element is modified to facilitate a bonding of the at least one metallic element to a polymeric layer. The polymeric layer is then bonded to the at least one metallic element to form the component.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract:
A steel cord used for reinforcing rubber product with an oval cross-section has a structure of m+n, while m is the number of core wires (26) and n is the number of the outer layer wires (22). The core wire (26) is untwisted while m is 1 or the core wires (26) are untwisted and aligned in parallel while m is between 2 and 4, and the outer layer wires (22) are twisted around said core wires (26). The core wires (26) are oval wires and the outer layer wires (22) are round wires. The wires (22, 26) in the steel cord have a carbon content not less than 0.60%.
Abstract:
Multistrand metal cord (C-1) having two layers (Ci, Ce) of J+K construction, which can especially be used for reinforcing tires for industrial vehicles, consisting of a core comprising J strands forming an inner layer (Ci), J varying from 1 to 4, around which core are wound, in a helix, with a helix pitch PK of between 20 and 70 mm, K outer strands forming an outer layer (Ce) around said inner layer (Ci), each outer strand: comprising a cord (10) having two layers (C1, C2) of L+M construction, rubberized in situ, comprising an inner layer (C1) comprised of L wires (11) of diameter d1, L varying from 1 to 4, and an outer layer (C2) of M wires (12), M being equal to or greater than 5, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (C1); and having the following characteristics (d1, d2 and p2 being expressed in mm): 0.10
Abstract:
A PC strand is untwisted to separate surrounding wires from a core wire, a synthetic resin powdered coating material is uniformly adhered by being applied and heated over the outer periphery of the core wire and surrounding wires in this untwisted state, the product is cooled to form a resin film, and then the surrounding wires are twisted back to the original state with respect to the core wire. Pre-heating is performed before the coating step and post-heating is performed after the coating step, the pre-heating temperature is set 30 to 130° C. higher than the post-heating temperature, a synthetic resin powdered coating material having an average grain size of 40 to 50 μm is used, and the process line speed is 5 to 10 m/min.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. incorporating a composition made of rubber in the uncrosslinked state referred to as “filling rubber”, the said cable comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a first sheathing step in which the core (C1) is sheathed with the filling rubber; a first assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named “core strand” (C1+C2); downstream of the said assembling point, a second sheathing step in which the core strand (C1+C2) is sheathed with the filling rubber; a second assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2) thus sheathed; a final twist-balancing step.
Abstract:
A wire rope has an independent wire rope core including lubricated individual core wires that are encapsulated in a tubular sheath of elastomeric or polymeric material surrounding the core wires and retaining the lubricant. A plurality of strands are located radially outwardly from and adjacent to the core. Each of the strands include strand wires that are lubricated. The strand wires are encapsulated in a tubular sheath of elastomeric or polymeric material that retain the lubrication for the strand wires. The core and strand encapsulating materials prevent direct metal-to-metal contact between core wires and strand wires, and between strand wires of adjacent strands. The core and strand encapsulating materials are applied in a manner so as to avoid loss of lubricant. Retaining lubrication and preventing direct metal-to-metal contact significantly improves the useful life of the wire rope.
Abstract:
In a rope of a type of filling a resin constituting other member between strands, there is provided a wire rope for a running wire capable of promoting fatigue life by reducing a wire breakage at a point of being contacted to a core rope by precisely constraining a movement of a wire and reducing an elongation.A rope having a core rope and a plurality of pieces of side strands arranged at an outer periphery thereof and twisted together, and a resinous spacer interposed between the side strands, in which the core rope includes a rope main body and a resin coating layer outwardly surrounding the core rope main body, the core rope main body and the side strand are separated by the resin coating layer, and the resin spacer is provided with a contour in correspondence with an outer layer wire of the side strand and invades between the wires.