Method for manufacturing semiconductor visible laser diode
    72.
    发明授权
    Method for manufacturing semiconductor visible laser diode 失效
    制造半导体可见激光二极管的方法

    公开(公告)号:US5508225A

    公开(公告)日:1996-04-16

    申请号:US218184

    申请日:1994-03-28

    Applicant: Kaoru Kadoiwa

    Inventor: Kaoru Kadoiwa

    Abstract: In a method for manufacturing a semiconductor laser diode, producing visible light after growing a p type GaAs contact layer on a p type AlGaInP cladding layer, an n type layer comprising that can be selectively etched with an etchant that does not etch GaAs is grown on the p type GaAs contact layer. After cooling, the n type layer is selectively etched and removed. In this method, a diffusion potential produced at the p-n junction between the p type GaAs contact layer and the n type layer prevents ionized hydrogen from entering the p type AlGaInP cladding layer during cooling, whereby the activation ratio of Zn atoms in the p type AlGaInP cladding layer is increased. Therefore, even if the Zn/III ratio during the growth of the p type AlGaInP cladding layer is low, a semiconductor laser diode with reduced threshold current and improved temperature characteristics is attained. In addition, since the n type layer grown on the p type GaAs contact layer comprises a semiconductor material that can be selectively etched with an etchant that does not etch GaAs, the etching process of the n type layer is carried out with high controllability without adversely affecting the surface of the p type GaAs contact layer, resulting in a highly reliable semiconductor laser diode.

    Abstract translation: 在制造半导体激光二极管的方法中,在p型AlGaInP包覆层上生长ap型GaAs接触层之后产生可见光,可以在p上选择性地蚀刻含有不蚀刻GaAs的蚀刻剂的n型层, 型GaAs接触层。 冷却后,选择性地蚀刻和去除n型层。 在该方法中,在p型GaAs接触层和n型层之间的pn结处产生的扩散电位在冷却期间防止电离氢进入p型AlGaInP包层,由此p型AlGaInP中的Zn原子的活化比 包层增加。 因此,即使在p型AlGaInP包层生长期间的Zn / III比低,也可以获得具有降低的阈值电流和改善的温度特性的半导体激光二极管。 另外,由于在p型GaAs接触层上生长的n型层包括可以用不蚀刻GaAs的蚀刻剂选择性地蚀刻的半导体材料,所以n型层的蚀刻工艺具有高可控性而不会有不利影响 影响p型GaAs接触层的表面,导致高度可靠的半导体激光二极管。

    Method for activating zinc in semiconductor devices
    75.
    发明授权
    Method for activating zinc in semiconductor devices 失效
    在半导体器件中激活锌的方法

    公开(公告)号:US5264397A

    公开(公告)日:1993-11-23

    申请号:US656908

    申请日:1991-02-15

    Abstract: A method for activating the zinc dopant in an active layer of a Group III/Group V semiconductor device comprises forming a layer of zinc doped Group III/Group IV material, and thereafter annealing the layer at a predetermined temperature and for a predetermined time sufficient to convert inactive zinc in the layer to acceptor zinc. In a preferred embodiment of the invention, a method for activating zinc dopant in the active layer of an InP-InGaAsP double heterostructure comprises annealing the active layer at a temperature of about 625.degree. C. for at least about 190 seconds which converts inactive zinc to acceptor zinc without substantially decreasing the total zinc in the active layer. In another preferred embodiment, a method for increasing the power output of InP-InGaAsP optoelectronic semiconductor device, such as a laser or an LED having a zinc doped active layer, comprises annealing the active layer of the semiconductor device at a temperature of about 625.degree. C. for at least about 190 seconds.

    Abstract translation: 用于激活III / V族半导体器件的有源层中的锌掺杂剂的方法包括形成锌掺杂的III族/第IV族材料层,然后在预定温度下将该层退火至足以使 将层中的无定形锌转化为受体锌。 在本发明的优选实施方案中,在InP-InGaAsP双异质结构的有源层中激活锌掺杂剂的方法包括在约625℃的温度下将活性层退火至少约190秒,其将非活性锌转化为 受体锌,而不会显着降低活性层中的总锌。 在另一个优选实施例中,用于增加InP-InGaAsP光电子半导体器件(例如激光器或具有锌掺杂有源层的LED)的功率输出的方法包括在约625℃的温度下退火半导体器件的有源层 C.至少约190秒。

    Surface emitting semiconductor laser
    76.
    发明授权
    Surface emitting semiconductor laser 失效
    表面发射半导体激光器

    公开(公告)号:US4949350A

    公开(公告)日:1990-08-14

    申请号:US380996

    申请日:1989-07-17

    Abstract: A vertical-cavity surface emitting laser and method of making in which a III-V heterostructure is epitaxially grown to include a quantum well active region between two interference mirrors separated by an emitting wavelength of the quantum well region. A small pillar of this heterostructure is etched by chemically assisted xenon ion beam itching. Prior to etching, a top metal contact is deposited on the epitaxial semiconductor. Light is emitted through the substrate having a bandgap larger than that of the quantum well region.

    Abstract translation: 垂直腔表面发射激光器及其制造方法,其中III-V异质结构外延生长以包括由量子阱区域的发射波长分隔的两个干涉镜之间的量子阱有源区。 通过化学辅助的氙离子束瘙痒蚀刻该异质结构的小柱。 在蚀刻之前,在外延半导体上沉积顶部金属接触。 光通过具有大于量子阱区的带隙的衬底发射。

    High power InGaAsP/InP semiconductor laser with low-doped active layer
and very low series resistance
    78.
    发明授权
    High power InGaAsP/InP semiconductor laser with low-doped active layer and very low series resistance 失效
    具有低掺杂有源层的高功率InGaAsP / InP半导体激光器和非常低的串联电阻

    公开(公告)号:US4679199A

    公开(公告)日:1987-07-07

    申请号:US779012

    申请日:1985-09-23

    Inventor: Robert Olshansky

    Abstract: In conventional InGaAsP/InP semiconductor lasers the p-doping in the InP laser level cannot be increased above 1.times.10.sup.18 atoms/cm.sup.3 without adversely affecting the optical characteristics of the devices. However, by introducing a thin low-doped p-InP layer and a thicker highly doped InP layer, good optical characteristics can be maintained and series resistance can be reduced by a factor of 2 to 4, thereby resulting in operable devices having significantly increased operating currents and higher output power than those of the prior art.

    Abstract translation: 在传统的InGaAsP / InP半导体激光器中,InP激光水平的p掺杂不能增加到高于1×1018原子/ cm3,而不会不利地影响器件的光学特性。 然而,通过引入薄的低掺杂p-InP层和较厚的高掺杂InP层,可以保持良好的光学特性并将串联电阻降低2至4倍,从而导致可操作的器件具有显着增加的操作 电流和较高的输出功率。

    VERTICAL CAVITY SURFACE EMITTING LASER (VCSEL), LASER SENSOR AND METHOD OF PRODUCING A VCSEL

    公开(公告)号:US20240204479A1

    公开(公告)日:2024-06-20

    申请号:US18589469

    申请日:2024-02-28

    Abstract: A vertical cavity surface emitting laser includes an optical resonator, a photodiode, and an electrical contact arrangement. The optical resonator includes a semiconductor multilayer stack. The semiconductor multilayer stack includes, in a direction of growth of the multilayer stack, a first distributed Bragg reflector, a second distributed Bragg reflector, and an active region for laser emission arranged between the first distributed Bragg reflector and second distributed Bragg reflector. The electrical contact arrangement is arranged to electrically pump the optical resonator and to electrically contact the photodiode. A reflectivity of the second distributed Bragg reflectoris higher than a reflectivity of the first distributed Bragg reflector. The photodiode has an absorbing region arranged in the second distributed Bragg reflector. A tunnel junction is arranged between the photodiode and the active region.

Patent Agency Ranking