Abstract:
Cryptosporidium hominis genes and gene products are provided. The genes and gene products are useful for chemotherapeutic, immunotherapeutic, immunoprophylactic and diagnostic applications.
Abstract:
This invention provides a high-yield bacterial strain for producing tetramethylpyrazine named Bacillus pumilus RX3-17. The strain has been deposited in China Center for Type Culture Collection on Apr. 19, 2006. The deposit number is CCTCC M 206043. The bacterial strain, isolated from soil, is rod-shaped, 1.5 μm to 3.0 μm in length and 0.6 μm to 0.7 μm in diameter. The colony color of the strain is milky-white. The strain has typical physiological and biochemical characteristics of Bacillus pumilus. The 16s rDNA sequence of this strain shares a similarity of 99% with other Bacillus pumilus strains. This invention belongs to the domain of biotechnology. The strain can be applied to the production of tetramethylpyrazine with glucose as the substrate, solving the bottleneck of low yield in bacterial tetramethylpyrazine fermentation.
Abstract:
A method of vanillin production from ferulic acid with a high concentration by biotransformation using a Streptomyces sp. strain is claimed in this invention. This strain is named as Streptomyces sp. V-1, which has been deposited in China Center for Type Culture Collection on Jul. 12, 2006 with the number of CCTCC M 206065. Using this strain, high concentration of vanillin fermentation broth is obtained from ferulic acid by biotransformation in GY biotransformation medium. With the addition of macroporous adsorbent resin DM11, the concentration of vanillin can be greatly improved. The advantage of this invention is less environmental pollution, high product concentration, less by-product, short processing cycle, low production cost, simple product extraction, clean production process, product environmental friendly, safe and reliable, which solves many difficulties in the vanillin production from botanical raw material extraction or chemical synthesis, and therefore it has good application prospect.
Abstract:
A method is provided for processing a substrate including providing a processing gas comprising an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials.
Abstract:
A backlight module includes a frame, a light guide plate, a FPCB and a plurality of point light sources. The light guide plate has a light incident surface. The point light sources are electrically connected with one surface of the FPCB, each point light source having an emitting surface. The frame includes a plurality of connecting sidewalls encircling the light guide plate. An inner surface of the sidewall facing the light incident surface defines a plurality of elastic members thereon according to the point light sources. Each elastic member pushes the corresponding point light source towards the light guide plate, so as to have the final position of the emitting surface of each point light source come in contact with the light incident surface. The present backlight module has a highly light energy utilization rate.
Abstract:
A cancellation circuit to remove the anti-resonance signal from a resonator. Micro-mechanical and surface and bulk acoustic wave resonators include an anti-resonance in an output signal. This has an undesirable effect on certain types of systems in their function and performance. An anti-resonance cancellation circuit removes the anti-resonance from the output of the resonators by providing a signal which is subtracted from the output of the resonator. The cancellation circuit includes a capacitor which is matched to the static capacitance of the resonator. The loads of the resonator and cancellation network are also matched.
Abstract:
A method of forming a silicon carbide layer for use in integrated circuit fabrication processes is provided. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a dopant in the presence of an electric field. The as-deposited silicon carbide layer has a compressibility that varies as a function of the amount of dopant present in the gas mixture during later formation.
Abstract:
Methods and apparatus for depositing low dielectric constant layers that are resistant to oxygen diffusion and have low oxygen contents are provided. The layers may be formed by exposing a low dielectric constant layer to a plasma of an inert gas to densify the low dielectric constant layer, by exposing the low dielectric constant layer to a nitrating plasma to form a passivating nitride surface on the layer, or by depositing a thin passivating layer on the low dielectric constant layer to reduce oxygen diffusion therein. The low dielectric constant layer may be deposited and treated in situ.
Abstract:
A method of forming a silicon carbide layer, a silicon nitride layer, an organosilicate layer is disclosed. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a fluorine source in the presence of an electric field. The silicon nitride layer is formed by reacting a gas mixture comprising a silicon source, a nitrogen source, and a fluorine source in the presence of an electric field. The organosilicate layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, an oxygen source and a fluorine source in the presence of an electric field. The silicon carbide layer, the silicon nitride layer and the organosilicate layer are all compatible with integrated circuit fabrication processes.
Abstract:
A method is provided for processing a substrate including treating a surface of a dielectric layer comprising silicon and carbon by exposing the dielectric layer comprising silicon and carbon to a plasma of an inert gas, and depositing a photoresist on the dielectric layer comprising silicon and carbon. The dielectric layer may comprise a first dielectric layer comprising silicon, carbon, and nitrogen, and a second layer of nitrogen-free silicon and carbon containing material in situ on the first dielectric layer, and a third dielectric layer comprising silicon, oxygen, and carbon on the second dielectric layer.