Abstract:
A conductive paste may include a conductive powder, a metallic glass including a first element having a heat of mixing value with the conductive powder of less than 0, and an organic vehicle, and an electronic device and a solar cell may include an electrode formed using the conductive paste.
Abstract:
A conductive paste including a conductive powder, a metallic glass, and an organic vehicle, wherein the metallic glass includes an alloy of at least two elements selected from an element having a low resistivity, an element which forms a solid solution with the conductive powder, or an element having a high oxidation potential, wherein the element having a low resistivity has a resistivity of less than about 100 microohm-centimeters, and the element having a high oxidation potential has an absolute value of a Gibbs free energy of oxide formation of about 100 kiloJoules per mole or greater.
Abstract:
A conductive paste including a combination of: a conductive powder, a metallic glass, and a dispersing agent represented by the following Chemical Formula 1 R1-L1-(OR2)n—(OR3)m—O-L2-COOH. Chemical Formula 1 In Chemical Formula 1, R1 is a substituted or unsubstituted C5 to C30 branched alkyl group, R2 and R3 are each independently a substituted or unsubstituted C2 to C5 alkylene group, L1 is a substituted or unsubstituted C6 to C30 arylene group, L2 is a single bond or a C1 to C4 alkylene group, n and m are each independently integers ranging from 0 to about 30, and 3≦n+m≦30.
Abstract:
A composite anode material for a solid oxide fuel cell (SOFC), an anode for a SOFC including a Ni-containing alloy including Ni and a transition metal other than Ni; and a perovskite metal oxide having a perovskite structure.
Abstract:
A thermoelectric material including a thermoelectric semiconductor; and a nanosheet disposed in the thermoelectric semiconductor, the nanosheet having a layered structure and a thickness from about 0.1 to about 10 nanometers. Also a thermoelectric element and thermoelectric module including the thermoelectric material.
Abstract:
A thermoelectric material is disclosed. The thermoelectric material is represented by the following formula; (A1-aA′a)4-x(B1-bB′b)3-y. A is a Group XIII element and A′ may be a Group XIII element, a Group XIV element, a rare earth element, a transition metal, or combinations thereof. A and A′ are different from each other. B may be S, Se, Te and B′ may be a Groups XIV, XV, XVI or combinations thereof. B and B′ are different from each other. a is equal to or larger than 0 and less than 1. b is equal to or larger than 0 and less than 1. x is between −1 and 1 and wherein y is between −1 and 1.
Abstract:
A thermoelectric material includes powders having a surface coated with an inorganic material. The thermoelectric material includes a thermoelectric semiconductor powder and a coating layer on an outer surface of the thermoelectric semiconductor powders.
Abstract:
A conductive paste may include a conductive powder, a metallic glass including a first element having a heat of mixing value with the conductive powder of less than 0, and an organic vehicle, and an electronic device and a solar cell may include an electrode formed using the conductive paste.
Abstract:
Disclosed are a heat dissipation material comprising a metallic glass and an organic vehicle and a light emitting diode package including at least one of a junction part, wherein the junction part includes a heat dissipation material including a metallic glass.
Abstract:
A conductive paste including a conductive powder, a metallic glass, and an organic vehicle, wherein the metallic glass includes an alloy of at least two metals selected from a first metal having a low resistivity, a second metal which forms a solid solution with the conductive powder, a third metal which extends a supercooled liquid region of the metallic glass, or a fourth metal having a higher standard free energy of formation of oxide than a standard free energy of formation of oxide of the first, the second, and third metals.