摘要:
An improved bifacial solar cell is disclosed. In some embodiments, the front side includes an n-type field surface field, while the back side includes a p-type emitter. In other embodiments, the p-type emitter is on the front side. To maximize the diffusion of majority carriers and lower the series resistance between the contact and the substrate, the regions beneath the metal contacts are more heavily doped. Thus, regions of higher dopant concentration are created in at least one of the FSF or the emitter. These regions are created through the use of selective implants, which can be performed on one or two sides of the bifacial solar cell to improve efficiency.
摘要:
An improved, lower cost method of processing substrates, such as to create solar cells is disclosed. In addition, a modified substrate carrier is disclosed. The carriers typically used to carry the substrates are modified so as to serve as shadow masks for a patterned implant. In some embodiments, various patterns can be created using the carriers such that different process steps can be performed on the substrate by changing the carrier or the position with the carrier. In addition, since the alignment of the substrate to the carrier is critical, the carrier may contain alignment features to insure that the substrate is positioned properly on the carrier. In some embodiments, gravity is used to hold the substrate on the carrier, and therefore, the ions are directed so that the ion beam travels upward toward the bottom side of the carrier.
摘要:
An apparatus and a method for detecting particle beam characteristics are disclosed. In one embodiment, the apparatus may have a body including a first end and second end and at least one detector between the first and second ends. The apparatus may have a transparent state where a portion of the particles entering the apparatus may pass through the apparatus. The apparatus may also have a minimum transparency state where substantially all of the particles entering the apparatus may be prevented from passing through the apparatus and detected. Different transparency state may be achieved by rotating the apparatus or the detector contained therein. With the apparatus, it is possible to detect the beam properties such as the beam intensity, angle, parallelism, and a distribution of the particles in a particle beam.
摘要:
An improved, lower cost method of processing substrates, such as to create solar cells, is disclosed. The doped regions are created on the substrate, using a mask or without the use of lithography or masks. After the implantation is complete, visual recognition is used to determine the exact region that was implanted. This information can then be used by subsequent process steps to crate a suitable metallization layer and provide alignment information. These techniques can also be used in other ion implanter applications. In another aspect, a dot pattern selective emitter is created and imaging is used to determine the appropriate metallization layer.
摘要:
An improved method of producing solar cells utilizes a mask which is fixed relative to an ion beam in an ion implanter. The ion beam is directed through a plurality of apertures in the mask toward a substrate. The substrate is moved at different speeds such that the substrate is exposed to an ion dose rate when the substrate is moved at a first scan rate and to a second ion dose rate when the substrate is moved at a second scan rate. By modifying the scan rate, various dose rates may be implanted on the substrate at corresponding substrate locations. This allows ion implantation to be used to provide precise doping profiles advantageous for manufacturing solar cells.
摘要:
An improved, lower cost method of processing substrates, such as to create solar cells, is disclosed. The doped regions are created on the substrate, using a mask or without the use of lithography or masks. After the implantation is complete, visual recognition is used to determine the exact region that was implanted. This information can then be used by subsequent process steps to crate a suitable metallization layer and provide alignment information. These techniques can also be used in other ion implanter applications. In another aspect, a dot pattern selective emitter is created and imaging is used to determine the appropriate metallization layer.
摘要:
An improved method of producing solar cells utilizes a mask which is fixed relative to an ion beam in an ion implanter. The ion beam is directed through a plurality of apertures in the mask toward a substrate. The substrate is moved at different speeds such that the substrate is exposed to an ion dose rate when the substrate is moved at a first scan rate and to a second ion dose rate when the substrate is moved at a second scan rate. By modifying the scan rate, various dose rates may be implanted on the substrate at corresponding substrate locations. This allows ion implantation to be used to provide precise doping profiles advantageous for manufacturing solar cells.
摘要:
A plasma processing apparatus comprises a plasma source configured to produce a plasma in a plasma chamber, such that the plasma contains ions for implantation into a workpiece. The apparatus also includes a focusing plate arrangement having an aperture arrangement configured to modify a shape of a plasma sheath of the plasma proximate the focusing plate such that ions exiting an aperture of the aperture arrangement define focused ions. The apparatus further includes a processing chamber containing a workpiece spaced from the focusing plate such that a stationary implant region of the focused ions at the workpiece is substantially narrower that the aperture. The apparatus is configured to create a plurality of patterned areas in the workpiece by scanning the workpiece during ion implantation.
摘要:
The manufacture of solar cells is simplified and cost reduced through by performing successive ion implants, without an intervening thermal cycle. In addition to reducing process time, the use of chained ion implantations may also improve the performance of the solar cell. In another embodiment, two different species are successively implanted without breaking vacuum. In another embodiment, the substrate is implanted, then flipped such that it can be and implanted on both sides before being annealed. In yet another embodiment, one or more different masks are applied and successive implantations are performed without breaking the vacuum condition, thereby reducing the process time.
摘要:
A technique for ion beam angle spread control is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam angle spread control. The method may comprise directing one or more ion beams at a substrate surface at two or more different incident angles, thereby exposing the substrate surface to a controlled spread of ion beam incident angles.