摘要:
Described herein is a method for producing a haze-free (Ba, Sr)TiO3 (BST) film, and devices incorporating the same. In one embodiment, the BST film is made haze-free by depositing the film with a substantially uniform desired crystal orientation, for example, (100), preferably by forming the film by metal-organic chemical vapor deposition at a temperature greater than about 580° C. at a rate of less than about 80 Å/min, to result in a film having about 50 to 53.5 atomic percent titanium. In another embodiment, where the BST film serves as a capacitor for a DRAM memory cell, a desired {100} orientation is induced by depositing the bottom electrode over a nucleation layer of NiO, which gives the bottom electrode a preferential {100} orientation. BST is then grown over the {100} oriented bottom electrode also with a {100} orientation. A nucleation layer of materials such as Ti, Nb and Mn can also be provided over the bottom electrode and beneath the BST film to induce smooth, haze-free BST growth. Haze-free BST film can also be favored by forming the bottom electrode at high temperatures close to those used for BST deposition, and without a vacuum break between the bottom electrode and BST deposition.
摘要:
An improved charge storing device and methods for providing the same, the charge storing device comprising a conductor-insulator-conductor (CIC) sandwich. The CIC sandwich comprises a first conducting layer deposited on a semiconductor integrated circuit. The CIC sandwich further comprises a first insulating layer deposited over the first conducting layer in a flush manner. The first insulating layer comprises a structure having a plurality of oxygen cites and a plurality of oxygen atoms that partially fill the oxygen cites, wherein the unfilled oxygen cites define a concentration of oxygen vacancies. The CIC sandwich further comprises a second conducting layer deposited over the first insulating layer in a strongly oxidizing ambient so as to reduce the concentration of oxygen vacancies in the first insulating layer, so as to provide an oxygen-rich interface layer between the first insulating layer and the second conducting layer, and so as to trap a plurality of oxygen atoms within the second conducting layer. The oxygen-rich interface layer and second conducting layer act as oxygen vacancy sinks for absorbing migrating oxygen vacancies that originate from the first insulating layer to thereby reduce the concentration of oxygen vacancies in the first insulating layer and to thereby reduce the buildup of oxygen vacancies at the interface layer. Thus, the first insulating layer provides an increased dielectric constant and an increased resistance to current flowing therethrough so as to increase the capacitance of the CIC sandwich and so as to reduce leakage currents flowing through the CIC sandwich.
摘要:
Described herein is a method for producing a haze-free (Ba, Sr)TiO3 (BST) film, and devices incorporating the same. In one embodiment, the BST film is made haze-free by depositing the film with a substantially uniform desired crystal orientation, for example, (100), preferably by forming the film by metal-organic chemical vapor deposition at a temperature greater than about 580° C. at a rate of less than about 80 Å/min, to result in a film having about 50 to 53.5 atomic percent titanium. In another embodiment, where the BST film serves as a capacitor for a DRAM memory cell, a desired {100} orientation is induced by depositing the bottom electrode over a nucleation layer of NiO, which gives the bottom electrode a preferential {100} orientation. BST is then grown over the {100} oriented bottom electrode also with a {100} orientation. A nucleation layer of materials such as Ti, Nb and Mn can also be provided over the bottom electrode and beneath the BST film to induce smooth, haze-free BST growth. Haze-free BST film can also be favored by forming the bottom electrode at high temperatures close to those used for BST deposition, and without a vacuum break between the bottom electrode and BST deposition.
摘要:
The invention includes methods of forming layers comprising epitaxial silicon. In one implementation, an opening is formed within a first material received over a monocrystalline material. Opposing sidewalls of the opening are lined with a second material, with monocrystalline material being exposed at a base of the second material-lined opening. A silicon-comprising layer is epitaxially grown from the exposed monocrystalline material within the second material-lined opening. At least a portion of the second material lining is in situ removed. Other aspects and implementations are contemplated.
摘要:
The invention includes methods of forming layers comprising epitaxial silicon. In one implementation, an opening is formed within a first material received over a monocrystalline material. Opposing sidewalls of the opening are lined with a second material, with monocrystalline material being exposed at a base of the second material-lined opening. A silicon-comprising layer is epitaxially grown from the exposed monocrystalline material within the second material-lined opening. At least a portion of the second material lining is in situ removed. Other aspects and implementations are contemplated.
摘要:
The invention includes methods of forming layers comprising epitaxial silicon. In one implementation, an opening is formed within a first material received over a monocrystalline material. Opposing sidewalls of the opening are lined with a second material, with monocrystalline material being exposed at a base of the second material-lined opening. A silicon-comprising layer is epitaxially grown from the exposed monocrystalline material within the second material-lined opening. At least a portion of the second material lining is in situ removed. Other aspects and implementations are contemplated.
摘要:
Self-assembling materials, such as block copolymers, are used as mandrels for pitch multiplication. The copolymers are deposited over a substrate and directed to self-assemble into a desired pattern. One of the blocks forming the block copolymers is selectively removed. The remaining blocks are used as mandrels for pitch multiplication. Spacer material is blanket deposited over the blocks. The spacer material is subjected to a spacer etch to form spacers on sidewalls of the mandrels. The mandrels are selectively removed to leave free-standing spacers. The spacers may be used as pitch-multiplied mask features to define a pattern in an underlying substrate.
摘要:
Methods, devices, and systems are provided for a select device that can include a semiconductive stack of at least one semiconductive material formed on a first electrode, where the semiconductive stack can have a thickness of about 700 angstroms (Å) or less. Each of the at least one semiconductive material can have an associated band gap of about 4 electron volts (eV) or less and a second electrode can be formed on the semiconductive stack.
摘要:
A method for creating structures in a semiconductor assembly is provided. The method includes etching apertures into a dielectric layer and applying a polymer layer over the dielectric layer. The polymer layer is applied uniformly and fills the apertures at different rates depending on the geometry of the apertures, or on the presence or absence of growth accelerating material. The polymer creates spacers for the etching of additional structure in between the spacers. The method is capable of achieving structures smaller than current lithography techniques.
摘要:
A method of forming a nonvolatile memory cell includes forming a first electrode having a first current conductive material and a circumferentially self-aligned second current conductive material projecting elevationally outward from the first current conductive material. The second current conductive material is different in composition from the first current conductive material. A programmable region is formed over the first current conductive material and over the projecting second current conductive material of the first electrode. A second electrode is formed over the programmable region. In one embodiment, the programmable region is ion conductive material, and at least one of the first and second electrodes has an electrochemically active surface directly against the ion conductive material. Other method and structural aspects are disclosed.