摘要:
A method for providing an alignment surface for liquid crystal molecules in a liquid crystal display, comprising depositing on an optically transparent substrate an optically transparent film; and irradiating the film with nitrogen ions sufficiently to produce a pretilt angle of preferably greater than ten degrees. The film is preferably comprised of diamond like carbon. A liquid crystal display formed in accordance with the method.
摘要:
The present invention provides a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD. The inventive composite material is also characterized by the substantial absence of the broad distribution of larger sized pores which is prevalent in prior art porous composite materials. The porous composite material includes a first solid phase having a first characteristic dimension and a second solid phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
摘要:
A diffusion barrier useful in semiconductor electronic devices, such as multi-level interconnect wiring structures, is provided. The diffusion barrier is characterized as having a low-dielectric constant of less than 3.5, preferably less than 3.0, as well as being capable of substantially preventing Cu and/or oxygen from diffusing into the active device areas of the electronic device. Since the diffusion barrier has a low-dielectric constant, the diffusion barrier has only a minor effect on the effective dielectric constant of the interconnect structure. The low-k diffusion barrier includes atoms of Si, C, H and N. The N atoms are non-uniformly distributed within the low-k diffusion barrier. Optionally, the low-k diffusion barrier may include atoms of Ge, O, halogens such as F or any combination thereof.
摘要:
A method and apparatus for depositing single crystal, epitaxial films of silicon carbon and silicon germanium carbon on a plurality of substrates in a hot wall, isothermal UHV-CVD system is described. In particular, a multiple wafer low temperature growth technique in the range from 350° C. to 750° C. is described for incorporating carbon epitaxially in Si and SiGe films with very abrupt and well defined junctions, but without any associated oxygen background contamination. Preferably, these epitaxial SiC and SiGeC films are in-situ doped p- or n-type and with the presence of low concentration of carbon
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
摘要:
A method for fabricating a thermally stable ultralow dielectric constant film comprising Si, C, O and H atoms in a parallel plate chemical vapor deposition process utilizing a plasma enhanced chemical vapor deposition (“PECVD”) process is disclosed. Electronic devices containing insulating layers of thermally stable ultralow dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of a thermally stable ultralow dielectric constant film, specific precursor materials are used, such as, silane derivatives, for instance, diethoxymethylsilane (DEMS) and organic molecules, for instance, bicycloheptadiene and cyclopentene oxide.
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
摘要:
A low-k dielectric material with increased cohesive strength for use in electronic structures including interconnect and sensing structures is provided that includes atoms of Si, C, O, and H in which a fraction of the C atoms are bonded as Si—CH3 functional groups, and another fraction of the C atoms are bonded as Si—R—Si, wherein R is phenyl, —[CH2]n— where n is greater than or equal to 1, HC═CH, C═CH2, C═C or a [S]n linkage, where n is a defined above.
摘要:
A method and apparatus for depositing single crystal, epitaxial films of silicon carbon and silicon germanium carbon on a plurality of substrates in a hot wall, isothermal UHV-CVD system is described. In particular, a multiple wafer low temperature growth technique in the range from 350° C. to 750° C. is described for incorporating carbon epitaxially in Si and SiGe films with very abrupt and well defined junctions, but without any associated oxygen background contamination. Preferably, these epitaxial SiC and SiGeC films are in-situ doped p- or n-type and with the presence of low concentration of carbon
摘要:
A semiconductor device structure and method for manufacture includes a substrate having a top first layer; a second thin transition layer located on top of the first layer; and, a third layer located on top of the transition layer, wherein the second thin transition layer provides strong adhesion and cohesive strength between the first and third layers of the structure. Additionally, a semiconductor device structure and method for manufacture includes an insulating structure comprising a multitude of dielectric and conductive layers with respective transition bonding layers disposed to enhance interfacial strength among the different layers. Further, an electronic device structure incorporates layers of insulating and conductive materials as intralevel or interlevel dielectrics in a back-end-of-the-line (“BEOL”) wiring structure in which the interfacial strength between different pairs of dielectric films is enhanced by a thin intermediate transition bonding layer.