Abstract:
For example, a wireless station may be configured to generate a plurality of time-domain streams in a time domain, the plurality of time-domain streams comprising at least a first time-domain stream comprising a first data sequence in a first interval and a second time-domain stream comprising a second data sequence in the first interval, the first time-domain stream comprises a time-inverted and sign-inverted complex conjugate of the second data sequence in a second interval subsequent to the first interval, and the second time-domain stream comprises a time-inverted complex conjugate of the first data sequence in the second interval; to convert the plurality of time-domain streams into a respective plurality of frequency-domain streams in a frequency domain; and to transmit a Multiple-Input-Multiple-Output (MIMO) transmission based on the plurality of frequency-domain streams.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of Single-User (SU) Multi-In-Multi-Out (MIMO) communication. For example, a first wireless station may configure at least one Phase Antenna Array (PAA) according to a predefined SU MIMO configuration, the SU MIMO configuration including at least a number of data streams, a number of PAAs to be used by the first wireless station, and a polarization type to be applied at the first wireless station; and may transmit a SU MIMO transmission to a second wireless station via the at least one PAA over a directional wireless communication band.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul and access communication via a common antenna array. For example, an apparatus may include a wireless communication unit to control an antenna array to form one or more first beams for communicating over one or more access links and to form one or more second beams for communicating over one or more backhaul links, the access links including wireless communication links between a wireless communication node and one or more mobile devices, and the backhaul links including wireless communication links between the wireless node and one or more other wireless communication nodes.
Abstract:
Embodiments can relate to an apparatus for interference mitigation in a wireless communication. The apparatus can comprise at least one processing element arranged to extract, from a received PDCCH or EPDCCH signal, modulated symbols; the modulated symbols having been modulated using a linear m-ary modulation constellation. The apparatus also comprises a demodulator to demodulate the extracted PDCCH or EPDCCH modulated symbols; the demodulator being operable to demodulate the extracted symbols according to the linear m-ary modulation constellation.
Abstract:
A multiple-input multiple output (MIMO) receiver includes circuitry to receive a MIMO transmission through a plurality of antennas over a channel comprising two or more 20 MHz portions of bandwidth. The MIMO transmission comprises a plurality of streams, each transmitted over a corresponding spatial channel and configured for reception by multiple user stations. The MIMO receiver also includes circuitry to simultaneously accumulate signal information within at least two or more of the 20 MHz portions of bandwidth. Each 20 MHz portion comprises a plurality of OFDM subcarriers. The MIMO receiver also includes circuitry to demodulate at least one of the steams using receive beamforming techniques. In this way, multi-user protocol data units can be received.
Abstract:
Technology for adjusting a receiver timing of a wireless device in a Coordinated MultiPoint (CoMP) system is disclosed. One method can include the wireless device receiving a plurality of node specific reference signals (RSs) from a plurality of cooperating nodes in a coordination set of the CoMP system. The coordination set includes at least two cooperating nodes. The wireless device can estimate a composite received RS timing from a plurality of received RS timings generated from the plurality of node specific RSs. The received RS timings represent timings from the at least two cooperating nodes. The wireless device can adjust the receiver timing based on the composite received RS timing. A node specific RS can include a channel-state information reference signal (CSI-RS).
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul and access communication via a common antenna array. For example, an apparatus may include a wireless communication unit to control an antenna array to form one or more first beams for communicating over one or more access links and to form one or more second beams for communicating over one or more backhaul links, the access links including wireless communication links between a wireless communication node and one or more mobile devices, and the backhaul links including wireless communication links between the wireless node and one or more other wireless communication nodes.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for handling interference measurements in a wireless communication network. An apparatus may include computer-readable media having instructions and processors coupled with the computer-readable media and configured to execute the instructions to identify, for a serving eNB, a neighboring eNB for which signal interference measurements are to be performed by one or more wireless devices served by the serving eNB, and request that the neighboring eNB transmit typical interference signals within data units which are configured for, and may or may not have, a scheduled physical downlink shared channel transmission. The wireless devices may be configured to perform the signal interference measurements based at least in part on the typical interference signals, which may include non-zero-power signals or zero-power signals. Other embodiments may be described and claimed.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a PPDU including a training field. For example, an Enhanced Directional Multi-Gigabit (DMG) (EDMG) wireless communication station may be configured to determine one or more Orthogonal Frequency Division Multiplexing (OFDM) Training (TRN) sequences in a frequency domain based on a count of one or more 2.16 Gigahertz (GHz) channels in a channel bandwidth for transmission of an EDMG PPDU including a TRN field; generate one or more OFDM TRN waveforms in a time domain based on the one or more OFDM TRN sequences, respectively, and based on an OFDM TRN mapping matrix, which is based on a count of the one or more transmit chains; and transmit an OFDM mode transmission of the EDMG PPDU over the channel bandwidth, the OFDM mode transmission comprising transmission of the TRN field based on the one or more OFDM TRN waveforms.
Abstract:
This disclosure describes systems, methods, and devices related to scheduled multi-user multiple-input multiple-output (MU-MIMO) acknowledgement. A device may determine a block acknowledgment schedule associated with one or more destination devices. The device may cause to send a multi-user multiple-input multiple-output (MU-MIMO) frame including the block acknowledgment schedule. The device may identify one or more acknowledgment frames received from at least one of the one or more destination devices based on the block acknowledgment schedule.