Abstract:
The present disclosure provides one embodiment of a method to form an interconnect structure. The method includes forming a first dielectric material layer on a substrate; patterning the first dielectric material layer to form a plurality of vias therein; forming a metal layer on the first dielectric layer and the substrate, wherein the metal layer fills in the plurality of vias; and etching the metal layer such that portions of the metal layer above the first dielectric material layer are patterned to form a plurality of metal lines, aligned with plurality of vias, respectively.
Abstract:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.
Abstract:
The present disclosure provides one embodiment of a method to form an interconnect structure. The method includes forming a first dielectric material layer on a substrate; patterning the first dielectric material layer to form a plurality of vias therein; forming a metal layer on the first dielectric layer and the substrate, wherein the metal layer fills in the plurality of vias; and etching the metal layer such that portions of the metal layer above the first dielectric material layer are patterned to form a plurality of metal lines, aligned with plurality of vias, respectively.
Abstract:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
Abstract:
An electroplating apparatus for depositing a conductive material on a semiconductor wafer includes a vessel for holding an electroplating bath, a support for holding a semiconductor wafer within the vessel and beneath a surface of the bath; first and second electrodes within the vessel, between which an electrical current may flow causing conductive material to be electrolytically deposited onto the wafer, a third electrode disposed outside of the bath for applying a static electric charge to the wafer, and an electrical power supply coupled with the third electrode.
Abstract:
A wafer is attached to a carrier by using an adhesive layer, and a portion of the adhesive layer is exposed adjacent to an edge of the wafer. After thinning the wafer, a protection layer is provided to cover the exposed portion of the adhesive layer. A plurality of dies is bonded onto the thinned wafer, and then the thinned wafer and the dies are encapsulated with a molding compound.
Abstract:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.
Abstract:
A semiconductor diffusion barrier layer and its method of manufacture is described. The barrier layer includes of at least one layer of TaN, TiN, WN, TbN, VN, ZrN, CrN, WC, WN, WCN, NbN, AlN, and combinations thereof. The barrier layer may further include a metal rich surface. Embodiments preferably include a glue layer about 10 to 500 Angstroms thick, the glue layer consisting of Ru, Ta, Ti, W, Co, Ni, Al, Nb, AlCu, and a metal-rich nitride, and combinations thereof. The ratio of the glue layer thickness to the barrier layer thickness is preferably about 1 to 50. Other alternative preferred embodiments further include a conductor annealing step. The various layers may be deposited using PVD, CVD, PECVD, PEALD and/or ALD methods including nitridation and silicidation methods.
Abstract:
The structures and methods described above provide mechanisms to improve interconnect reliability and resistivity. The interconnect reliability and resistivity are improved by using a composite barrier layer, which provides good step coverage, good copper diffusion barrier, and good adhesion with adjacent layers. The composite barrier layer includes an ALD barrier layer to provide good step coverage. The composite barrier layer also includes a barrier-adhesion-enhancing film, which contains at least an element or compound that contains Mn, Cr, V, Ti, or Nb to improve adhesion. The composite barrier layer may also include a Ta or Ti layer between the ALD barrier layer and the barrier-adhesion-enhancing layer.
Abstract:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.