摘要:
A cleaning method of removing a vapor-deposition material adhering to equipments without exposure to the atmosphere is provided. A vapor-deposition material adhering to equipments (components of a film-forming apparatus) such as a substrate holder, a vapor-deposition mask, a mask holder, or an adhesion preventing shield provided in a film-forming chamber are subjected to heat treatment. Because of this, the adhering vapor-deposition material is re-sublimated, and removed by exhaust through a vacuum pump. By including such a cleaning method in the steps of manufacturing an electro-optical device, the manufacturing steps are shortened, and an electro-optical device with high reliability can be realized.
摘要:
The memory capacity of a DRAM is enhanced. A semiconductor memory device includes a driver circuit including part of a single crystal semiconductor substrate, a multilayer wiring layer provided over the driver circuit, and a memory cell array layer provided over the multilayer wiring layer. That is, the memory cell array overlaps with the driver circuit. Accordingly, the integration degree of the semiconductor memory device can be increased as compared to the case where a driver circuit and a memory cell array are provided in the same plane of a substrate containing a singe crystal semiconductor material.
摘要:
A semiconductor device which includes an oxide semiconductor and has favorable electrical characteristics is provided. In the semiconductor device, an oxide semiconductor film and an insulating film are formed over a substrate. Side surfaces of the oxide semiconductor film are in contact with the insulating film. The oxide semiconductor film includes a channel formation region and regions containing a dopant between which the channel formation region is sandwiched. A gate insulating film is formed on and in contact with the oxide semiconductor film. A gate electrode with sidewall insulating films is formed over the gate insulating film. A source electrode and a drain electrode are formed in contact with the oxide semiconductor film and the insulating film.
摘要:
A light-emitting element which at least includes a monomolecular layer including a luminescent center material with a fluorescent light-emitting property, and a monomolecular layer including a host material with a carrier (electron or hole)-transport property and a band gap larger than a band gap (note that a band gap refers to the energy difference between a HOMO level and a LUMO level) of the luminescent center material, between a pair of electrodes, in which the monomolecular layer including the host material and the monomolecular layer including the luminescent center material share the same interface, is provided.
摘要:
There is provided a technique to form a single crystal semiconductor thin film or a substantially single crystal semiconductor thin film. A catalytic element for facilitating crystallization of an amorphous semiconductor thin film is added to the amorphous semiconductor thin film, and a heat treatment is carried out to obtain a crystalline semiconductor thin film. After the crystalline semiconductor thin film is irradiated with ultraviolet light or infrared light, a heat treatment at a temperature of 900 to 1200° C. is carried out in a reducing atmosphere. The surface of the crystalline semiconductor thin film is extremely flattened through this step, defects in crystal grains and crystal grain boundaries disappear, and the single crystal semiconductor thin film or substantially single crystal semiconductor thin film is obtained.
摘要:
An object is to provide a deposition method for smoothly obtaining desired pattern shapes of material layers and a method for manufacturing a light-emitting device while throughput is improved when a plurality of different material layers is stacked on a substrate. A material layer is selectively formed in advance in a position overlapped with a light absorption layer over a first substrate by pump feeding. Three kinds of light-emitting layers are deposited on one deposition substrate. This first substrate and a second substrate that is to be a deposition target substrate are arranged to face each other, and the light absorption layer is heated by being irradiated with light, whereby a film is deposited on the second substrate. Three kinds of light-emitting layers can be deposited with positional accuracy by performing only one position alignment before light irradiation.
摘要:
An object is to provide a data processing device which achieves multiple functions or easy additional providing of a function while suppressing adverse influence on a communication distance or to improve resistance to electrostatic discharge in the data processing device. The data processing device includes an antenna which transmits and receives a first signal to/from a first terminal device through wireless communication, an integrated circuit which executes a process in accordance with the first signal, and a terminal portion which transmits and receives a second signal to/from a second terminal device and has an exposed conductive portion on its surface. A protection circuit is provided between at least one terminal of terminals of the terminal portion and a power supply terminal of a high potential and between the one terminal and a power supply terminal of a low potential.
摘要:
An objective is to increase the reliability of a light emitting device structured by combining TFTs and organic light emitting elements. A TFT (1201) and an organic light emitting element (1202) are formed on the same substrate (1203) as structuring elements of a light emitting device (1200). A first insulating film (1205) which functions as a blocking layer is formed on the substrate (1203) side of the TFT (1201), and a second insulating film (1206) is formed on the opposite upper layer side as a protective film. In addition, a third insulating film (1207) which functions as a barrier film is formed on the lower layer side of the organic light emitting element (1202). The third insulating film (1207) is formed by an inorganic insulating film such as a silicon nitride film, a silicon oxynitride film, an aluminum nitride film, an aluminum oxide film, or an aluminum oxynitride film. A fourth insulating film (1208) and a partitioning layer (1209) formed on the upper layer side of the organic light emitting element (1202) are formed using similar inorganic insulating films.
摘要:
The light-emitting apparatus comprising thin film transistors and light emitting elements, comprises; a second inorganic insulation layer on a gate electrode, a first organic insulation layer on the second inorganic insulation layer, a third inorganic insulation layer on the first organic insulation layer, an anode on the third inorganic insulation layer, a second organic insulation layer overlapping with the end of the anode and having an inclination angle of 35 to 45 degrees, a fourth inorganic insulation layer on the upper and side surfaces of the second organic insulation layer and having an opening over the anode, an organic compound layer in contact with the anode and the fourth inorganic insulation layer and containing light-emitting material, and a cathode in contact with the organic compound layer, wherein the third and the fourth inorganic insulation layers comprise silicon nitride or aluminum nitride.
摘要:
A single crystal semiconductor substrate is irradiated with ions that are generated by exciting a hydrogen gas and are accelerated with an ion doping apparatus, thereby forming a damaged region that contains a large amount of hydrogen. After the single crystal semiconductor substrate and a supporting substrate are bonded, the single crystal semiconductor substrate is heated to be separated along the damaged region. While a single crystal semiconductor layer separated from the single crystal semiconductor substrate is heated, this single crystal semiconductor layer is irradiated with a laser beam. The single crystal semiconductor layer undergoes re-single-crystallization by being melted through laser beam irradiation, thereby recovering its crystallinity and planarizing the surface of the single crystal semiconductor layer.