Abstract:
A coder has a binarizing circuit (130) for converting multivalued data into a binary symbol sequence, the multivalued data being generated from an input signal and having a plurality of contexts, an arithmetic code amount approximating circuit (200) for calculating a prediction code amount in the predetermined coding unit from the binary symbol sequence, and a coding circuit (102) for coding the input signal arithmetically on the basis of the prediction code amount. The arithmetic code amount approximating circuit (200) includes a selector (230) for dividing the binary symbol sequence into a plurality of groups based on the contexts, a plurality of code amount approximating circuits (211-214) for calculating, from the binary symbol sequence divided into a plurality of groups, the prediction code amount of the group based on at least the section range in arithmetic coding, and an adder (231) for adding the prediction code amounts from all code amount approximating circuits and outputting the prediction code amount in the specified coding unit.
Abstract:
A semiconductor integrated circuit has a central processing unit and a rewritable nonvolatile memory area disposed in an address space of the central processing unit. The nonvolatile memory area has a first nonvolatile memory area and a second nonvolatile memory area, which memorize information depending on the difference of threshold voltages. The first nonvolatile memory area has the maximum variation width of a threshold voltage for memorizing information set larger than that of the second nonvolatile memory area. When the maximum variation width of the threshold voltage for memorizing information is larger, since stress to a memory cell owing to a rewrite operation of memory information becomes larger, it is inferior in a point of guaranteeing the number of times of rewrite operation; however, since a read current becomes larger, a read speed of memory information can be expedited. The first nonvolatile memory area can be prioritized to expedite a read speed of the memory information and the second nonvolatile memory area can be prioritized to guarantee the number of times of rewrite operation of memory information.
Abstract:
It is an object of the present invention to provide a method for determining inflammatory diseases including myocardial infarction as a typical example, which involves identifying polymorphisms associated with myocardial infarction and using the gene polymorphisms, an oligonucleotide that can be used for the method, a kit for diagnosing inflammatory diseases, a therapeutic agent for inflammatory diseases, and the like. The present invention provides a method for determining an inflammatory disease, which comprises detecting at least one type of gene polymorphism existing in a proteasome subunit α type 6 gene.
Abstract:
A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
Abstract:
A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
Abstract:
A semiconductor integrated circuit (LSI) in which control information for determining a voltage or a width of a pulse produced itself can easily be set in parallel with other LSIs, and set information can be corrected easily. From an external evaluation device, a voltage of an expected value is supplied in overlapping manner to a plurality of LSIs each having a CPU and a flash memory. Each LSI incorporates a comparison circuit comparing an expected voltage value and a boosted voltage generated in itself. The CPU refers to a comparison result and optimizes control data in a data register for changing a boosted voltage. The CPU controls the comparison circuit and the data register and performs trimming in a self-completion manner, thereby making, trimming on a plurality of LSIs easily in a parallel manner and a total test time reduced.
Abstract:
The object of the invention is to carry out typing for multiple SNP sites automatically from the stage of sample preparation. A mixture of sample (2) and PCR reaction solution (4) is subjected to PCR reaction according to a given temperature cycle. After the completion of PCR reaction, invader reagent (6) is added thereto. Subsequently, the reaction mixture having the invader reagent (6) added thereto is added to probe fixing part (8) of typing reaction zone to thereby effect reaction therebetween. Invader probes capable of emitting fluorescence in respective correspondence to multiple SNP sites are separately held on individual sites of the probe fixing part (8), so that the reaction mixture reacts with the invader probes and when SNPs corresponding to the invader probes exist, fluorescence is emitted.
Abstract:
A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section. Assuming that the thickness of a gate insulating film of the second transistor section is defined as tc and the thickness of a gate insulating film of the first transistor section is defined as tm, they have a relationship of tc
Abstract:
Disclosed is a nonvolatile memory system including at least one nonvolatile memory each having a plurality of nonvolatile memory cells and a buffer memory; and a control device coupled to the nonvolatile memory. The control device is enabled to receive external data and to apply the data to the nonvolatile memory, and the nonvolatile memory is enabled to operate a program operation including storing the received data to the buffer memory and storing the data held in the buffer memory to ones of nonvolatile memory cells. Moreover, the control device is enabled to receive external data while the nonvolatile memory is operating in the program operation. Also, the buffer memory is capable of receiving a unit of data, equal to the data length of data to be stored at one time of the program operation, the data length being more than 1 byte.
Abstract:
Disclosed is a nonvolatile memory system including at least one nonvolatile memory each having a plurality of nonvolatile memory cells and a buffer memory; and a control device coupled to the nonvolatile memory. The control device is enabled to receive external data and to apply the data to the nonvolatile memory, and the nonvolatile memory is enabled to operate a program operation including storing the received data to the buffer memory and storing the data held in the buffer memory to ones of nonvolatile memory cells. Moreover, the control device is enabled to receive external data while the nonvolatile memory is operating in the program operation. Also, the buffer memory is capable of receiving a unit of data, equal to the data length of data to be stored at one time of the program operation, the data length being more than 1 byte.