摘要:
Diesters of olefinically unsaturated 1,2- and/or 1,4-diols are prepared by reacting a conjugated diolefin, oxygen and a fatty acid, in the gas phase or liquid phase, over a solid catalyst which contains palladium and/or platinum and a further metal, which has an atomic number of from 21 to 30, from 39 to 48 or from 57 to 80, but is not a platinum metal, the catalyst having been obtained by reduction of compounds, applied to a carrier, of platinum and/or palladium and the further metal, and heating at 400.degree. C. or above.
摘要:
An iron-modified, platinum hydrogenation catalyst useful for the reduction of aromatic nitro compounds is provided. The catalyst, having improved distribution of the metallic components on an oleophilic carbon support as shown by ESCA analysis, is prepared by depositing a platinum compound (oxide, hydroxide or carbonate) on the carbon support at a temperature in the range of 55.degree.-95.degree. C., preferably 90.degree.-95.degree. C., and then reducing the compound to platinum metal, preferably with formaldehyde, at a temperature less than about 35.degree. C. The iron in the catalyst is present and deposited as its oxide or hydroxide either at the same temperature as the platinum compound or at a temperature less than about 35.degree. C. Using such a catalyst to reduce halogen-substituted nitro aromatic compounds to the corresponding amines results in low dehalogenation, low tar formation and hydroxylamine accumulation. For nonhalogenated nitro aromatic reductions, the catalyst minimizes ring reduction.
摘要:
A catalyst for decomposing ammonia by oxidation is produced by converting the surface layer of steel material of specified shape resembling a ring, honeycomb, plate or the like to an aluminum alloy, treating the steel material with an aluminum dissolving solution to dissolve out the aluminum and to render the surface layer porous, subjecting the steel material to oxidation treatment to obtain a catalyst carrier, and causing the carrier to support platinum.
摘要:
The present invention relates to a catalyst carrier characterized by the fact that it comprises a substance which promotes a transition of an alumina that can be converted to .alpha.-alumina, which substance is located near the surface of a carrier composed mainly of alumina and which carrier is subjected to a heat treatment under appropriate conditions, thereby causing the transition of said alumina to .alpha.-alumina, with those pores near the surface made larger in diameter than those pores located more deeply within the carrier. The invention also includes a method of manufacturing said catalyst carrier.
摘要:
The present disclosure relates to the technical field of molecular biology, and in particular to a method for preparing a Pt-based alloy/MOFs catalyst with high hydrogenation selectivity, and a preparation method thereof. The present disclosure prepares a Pt-based alloy/MOFs structure with Pt alloy particles uniformly supported on the surface of MOFs in one step through a simple solvothermal method, the preparation method of the present disclosure is simple, the reaction environment is not harsh and does not require a special atmosphere. The resulting product has a unique structure, with small metal particles, uniform distribution and not easy to lose, and it will not affect the catalytic activity of the metal. In terms of catalytic performance, the obtained Pt alloy/MOFs catalyst can catalytically hydrogenate cinnamaldehyde under normal temperature and pressure, and has excellent performance. In addition, the catalyst can also catalyze the selective hydrogenation of 3-nitrostyrene, catalyze the dehydrogenation of tetrahydroquinoline, which proves that the catalyst of the present disclosure has a wide range of applications.
摘要:
The present invention relates to HTS catalysts applied in hydrogen or synthesis gas production units, whether in steam reforming, autothermal reforming, dry or gasification reforming, chromium-free, consisting of iron oxide, containing platinum contents between 0.1 to 0.4% w/w, promoted by sodium contents between 0.1 to 0.3% w/w, and optionally aluminum contents between 5.0 to 6.0% w/w inserted into the crystal lattice of an iron oxide with a hematite (Fe2O3) crystal structure, thus, allowing high activity to be reconciled with excellent resistance to deactivation by exposure to high temperatures. In a second aspect, the present invention provides a carbon monoxide conversion process by bringing said catalyst into contact with a synthesis gas stream, where the maximum bed temperature can be limited by the injection of water or steam next to the feed of CO-containing gas at the reactor inlet.
摘要:
Photocatalysts and methods of making and using the same are disclosed. The photocatalyst includes a TIO2 ultra-nanoparticle having a single Fe, Co, Mn, Cr, or W atom positioned as an engineered defect within the particle and a single metal catalyst atom bound proximal to the single Fe, Co, Mn, Cr, or W atom. The method of making the photocatalyst includes generating a plurality of ultra-nano TIO2 particles, each having a single Fe, Co, Mn, Cr, or W atom positioned as an engineered defect within the particle. The method further includes photodepositing a single metal catalyst atom proximal to the single Fe, Co, Mn, Cr, or W atom for at least a portion of the ultra-nano TIO2 particles, thereby creating the disclosed photocatalyst. The single metal catalyst atom is in a positive oxidation state and can be Pt, Pd, Ir, Ru, Rh, Os, Re, Au, Ni, Zn, or Cu.
摘要:
The present invention relates to a method of improving the corrosion resistance of a metal substrate surface using an oxygen reduction catalyst, which may improve the corrosion resistance of the metal substrate surface by coating the metal substrate surface with the oxygen reduction catalyst so that the metal substrate surface is changed to a passive state through the action of the oxygen reduction catalyst in an environment in which a stable oxide layer is not spontaneously formed on the metal substrate surface. The present invention has an advantage in that it can dramatically improve the corrosion resistance of the metal substrate under a corrosive environment by allowing a recoverable oxide layer to be formed on the metal substrate surface through the action of the oxygen reduction catalyst, applied to the surface, even in an environment in which an oxide layer is not spontaneously formed on the metal substrate.
摘要:
The present invention are new and improved processes and catalysts that can efficiently facilitate the direct carbon dioxide conversion reaction with hydrogen to hydrocarbons in a single reactor at temperatures less than 450° C. and more preferably at temperatures from 250° C. to 325° C. Carbon dioxide is utilized from stationary sources or from direct air capture. Hydrogen is produced by the electrolysis of water using renewable or low carbon electricity.