Abstract:
A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.
Abstract:
Provided is a method of manufacturing a semiconductor device using a substrate processing apparatus including a reaction chamber in which a plurality of substrates are stacked at a predetermined distance; a first gas supply nozzle installed to extend to a region in which the plurality of substrates are stacked; a second gas supply nozzle installed to extend to a different position from a position at which the first gas supply nozzle is installed in the region in which the plurality of substrates are stacked; a first branch nozzle installed at the first gas supply nozzle in a direction parallel to major surfaces of the plurality of substrates, at least one line of which is branched in a direction of the second gas supply nozzle, and including at least one first gas supply port; and a second branch nozzle installed at the second gas supply nozzle in the direction parallel to the major surfaces of the plurality of substrates, at least one line of which is branched in a direction of the first gas supply nozzle, and including at least one second gas supply port; wherein the first gas supply port and the second gas supply port are installed adjacent to each other in a direction that the plurality of substrates are stacked, the method including the steps of: loading the plurality of substrates into the reaction chamber; and forming SiC films by supplying at least a silicon-containing gas and a chlorine-containing gas or a silicon/chlorine-containing gas through the first gas supply port and supplying at least a carbon-containing gas and a reduction gas through the second gas supply port.
Abstract:
An apparatus for high-rate chemical vapor (CVD) deposition of semiconductor films comprises a reaction chamber for receiving therein a substrate and a film forming gas, a gas inlet for introducing the film forming gas into the reaction chamber, an incidence window in the reaction chamber for transmission of a laser sheet into the reaction chamber, a laser disposed outside the reaction chamber for generating the laser sheet and an antenna disposed outside the reaction chamber for generating a plasma therein. The film forming gas in the chamber is excited and decomposed by the laser sheet, which passes in parallel with the substrate along a plane spaced apart therefrom, and concurrent ionization effected by the antenna, thereby forming a dense semiconductor film on the substrate at high rate.
Abstract:
A silicon carbide manufacturing device includes a graphite crucible, in which a seed crystal is disposed, a gas-inducing pipe coupled with the graphite crucible, and an attachment prevention apparatus. The gas-inducing pipe has a column-shaped hollow part, through which a source gas flows into the graphite crucible. The attachment prevention apparatus includes a rod extending to a flow direction of the source gas, and a revolving and rotating element for revolving the rod along an inner wall of the gas-inducing pipe while rotating the rod on an axis of the rod in parallel to the flow direction.
Abstract:
In a surface processing method for processing a surface of a member made of silicon carbide (SiC) and having a fragmental layer on a surface thereof, the surface of the member having the fragmental layer is modified into a dense layer to reduce the number of particles generated from the surface of the member when the member is applied to a plasma processing apparatus. Here, the SiC of the surface of the member is recrystallized by heating the fragmental layer.
Abstract:
Provided is a substrate processing apparatus, a semiconductor device manufacturing method, and a substrate manufacturing method. The substrate processing apparatus comprises: a reaction chamber configured to process substrates; a first gas supply system configured to supply at least a silicon-containing gas and a chlorine-containing gas or at least a gas containing silicon and chlorine; a first gas supply unit connected to the first gas supply system; a second gas supply system configured to supply at least a reducing gas; a second gas supply unit connected to the second gas supply system; a third gas supply system configured to supply at least a carbon-containing gas and connected to at least one of the first gas supply unit and the second gas supply unit; and a control unit configured to control the first to third gas supply systems.
Abstract:
The present invention provides method and process for forming a barrier layer on a flexible substrate. The continuous roll-to-roll method includes providing a substrate to a processing chamber using at least one roller configured to guide the substrate through the processing chamber. The process includes depositing a barrier layer adjacent the substrate by exposing at least one portion of the substrate that is within the processing chamber to plasma comprising a silicon-and-carbon containing precursor gas. The present invention is further directed to a coated flexible substrates comprising a barrier layer based on the structural unit SiC:H. The barrier layer possesses high density and low porosity. Still further, the barrier layer exhibits low water vapor transmission rate (WVTR) in the range of 10−2-10−3 g.m−2d−1 and is appropriate for very low permeability applications.
Abstract:
A liquid crystal display apparatus includes a first display substrate, a second display substrate and a liquid crystal layer disposed therebetween. The first and second display substrates include first and second vertical inorganic alignment layers, respectively, to vertically align liquid crystal molecules of the liquid crystal layer. The first and second vertical inorganic alignment layers each include a silicon carbide and are formed on the first and second display substrates, respectively, by a chemical vapor deposition method or a sputtering method. Thus, processes for the vertical inorganic alignment layer may be simplified, thereby improving manufacturing productivity of the liquid crystal display apparatus.
Abstract:
A method is provided for processing a substrate including providing a processing gas comprising an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials. A method is provided for depositing a silicon carbide cap layer that has substantially no phenyl groups attached to silicon atoms from a processing gas comprising an oxygen-free organosilicon compound on a low k silicon carbide barrier layer.
Abstract:
A plasma processing apparatus includes: a reaction chamber; two electrodes provided inside the reaction chamber for generating a plasma therebetween, wherein at least one of the electrodes has at least one gas inlet pore through which a gas is introduced into the reaction chamber; and a gas inlet pipe coupled to the gas inlet pore for introducing the gas into the reaction chamber. The gas inlet pipe is grounded and insulated from the gas inlet pore, wherein an insulation member is placed inside the gas inlet pipe and the gas inlet pore.