Abstract:
A method of manufacturing a substrate processing chamber component comprises forming a chamber component comprising a metal alloy comprising yttrium and aluminum, and anodizing an exposed surface of the metal alloy.
Abstract:
A coating includes a nano-composite base comprising a number of films, the films stacked together one after another. Each film includes a nickel-titanium carbonitride layer and a titanium carbonitride layer.
Abstract:
In one embodiment, a steam device includes a high-temperature member and a low-temperature member. One surface of the high-temperature member is exposed to high-temperature steam, and the other surface is cooled by cooling steam having a temperature lower than the high-temperature steam. The low-temperature member is disposed to face the high-temperature member with a passage for the cooling steam therebetween and is formed of a material having a heat resistance lower than that of the high-temperature member. The steam device has at least one high-reflectance film selected from a first high-reflectance film, which is formed on the surface of the high-temperature member which is exposed to the high-temperature steam and has a higher reflectance with respect to infrared rays than the high-temperature member, and a second high-reflectance film, which is formed on the surface of the low-temperature member facing the high-temperature member and has a higher reflectance with respect to infrared rays than the low-temperature member.
Abstract:
The present invention relates to a drill comprising a cemented carbide or high speed steel substrate and a coating wherein the coating comprises: a first layer system having a multilayered structure covering substantially the whole active part of the drill, a second layer system having a multilayered structure covering only the tip area of the drill.Drills according to the present invention have good wear resistance and improved properties when reconditioning the drill.The present invention also relates to a method of making a drill according to the present invention.
Abstract:
A coating for cutting tools or wear parts has at least one crystalline SixC1-x-y-zNyMz layer formed by means of a PVD method and at least one hard carbon layer, which is diamond or DLC. Si and C are essential components of the SixC1-x-y-zNyMz layer and M is one or more elements selected from among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, B, Al and Ru (wherein 0.4≦x≦0.6, 0≦y≦0.1, and 0≦z≦0.2). The SixC1-x-y-zNyMz layer has a half-value width of an SiC peak observed at 34° to 36° of diffraction angle when X-ray diffraction (XRD) is carried by using a CuKα ray is 3° or less. A method for forming the coating layer using PVD is carried out under certain temperature and substrate bias conditions.
Abstract:
A multilayer coating (MLC) is composed of two chemically different layered nanocrystalline materials, nanodiamond (nanoD) and nano-cubic boron nitride (nono-cBN). The structure of the MLC and fabrication sequence of layered structure are disclosed. The base layer is preferably nanoD and is the first deposited layer serving as an accommodation layer on a pretreated substrate. It can be designed with a larger thickness whereas subsequent alternate nano-cBN and nanoD layers are typically prepared with a thickness of 2 to 100 nm. The thickness of these layers can be engineered for a specific use. The deposition of the nanoD layer, by either cold or thermal plasma CVD, is preceded by diamond nucleation on a pretreated and/or precoated substrate, which has the capacity to accommodate the MLC and provides excellent adhesion. Nano-cBN layers are directly grown on nanodiamond crystallites using ion-assisted physical vapor deposition (PVD) and ion-assisted plasma enhanced chemical vapor deposition (PECVD), again followed by nanodiamond deposition using CVD methods in cycles until the intended number of layers of the MLC is obtained.
Abstract:
A solid particle erosion resistant surface treated coating has a solid particle erosion resistance that is largely enhanced and a rotating member having the coating gains oxidation resistance without deteriorating a fatigue strength. Also, a rotating machine can have this coating applied thereto. The solid particle erosion resistant surface treated coating has a nitrided hard layer formed on a surface of a base material and a PVD (physical vapor deposition) hard layer of at least one layer formed on the nitrided hard layer by a PVD method. Deformation of the base material by collisions by solid particles is prevented and cracking of the coating is prevented. Thereby, the solid particle erosion resistance is secured, life of the solid particle erosion resistant surface treated coating can be increased and oxidation resistance and fatigue strength are enhanced.
Abstract:
A multilayer hard coating for tools for machining applications with a multilayer structure for improving the wear resistance of workpieces includes at least one (AlyCr1-y)X layer (0.2≦y≦0.7), wherein X is one of the following elements N, C, B, CN, BN, CBN, NO, CO, BO, CNO, BNO, CBNO, but preferably N or CN, and/or a (TizSi1-z) layer (0.99≧z≧0.7). The hard coating also includes at least one layer stack with one (AlCrTiSi) X mixed layer, followed by another (TizSi1-z)X layer, followed by another (AlCrTiSi) X mixed layer, followed by another (AlyCr1-y)X layer.
Abstract:
An endoprosthesis, such as a stent, having a layer that can enhance the biocompatibility of the endoprosthesis, and methods of making the endoprosthesis are disclosed.
Abstract:
The invention relates to a metal substrate coated at least partially with a layered structure. The layered structure comprises an intermediate layer deposited on the metal substrate and an amorphous carbon layer deposited on the intermediate layer. The amorphous carbon layer has a Young's modulus lower than 200 GPa. The intermediate layer comprises a tetrahedral carbon layer having a Young's modulus higher than 200 GPa. The invention further relates to a method to reduce the wear on a counterbody of a metal substrate coated with a tetrahedral carbon coating.