摘要:
A transistor and method of fabrication thereof includes a screening layer formed at least in part in the semiconductor substrate beneath a channel layer and a gate stack, the gate stack including spacer structures on either side of the gate stack. The transistor includes a shallow lightly doped drain region in the channel layer and a deeply lightly doped drain region at the depth relative to the bottom of the screening layer for reducing junction leakage current. A compensation layer may also be included to prevent loss of back gate control.
摘要:
Structures and methods of fabrication thereof related to an improved semiconductor on insulator (SOI) transistor formed on an SOI substrate. The improved SOI transistor includes a substantially undoped channel extending between the source and the drain, an optional threshold voltage set region positioned below the substantially undoped channel, and a screening region positioned below the threshold voltage set region. The threshold voltage of the improved SOI transistor can be adjusted without halo implants or threshold voltage implants into the channel, using the position and/or dopant concentration of the screening region and/or the threshold voltage set region.
摘要:
A dynamic random access memory (DRAM) can include at least one DRAM cell array, comprising a plurality of DRAM cells, each including a storage capacitor and access transistor; a body bias control circuit configured to generate body bias voltage from a bias supply voltage, the body bias voltage being different from power supply voltages of the DRAM; and peripheral circuits formed in the same substrate as the at least one DRAM array, the peripheral circuits comprising deeply depleted channel (DDC) transistors having bodies coupled to receive the body bias voltage, each DDC transistor having a screening region of a first conductivity type formed below a substantially undoped channel region.
摘要:
A method for fabricating field effect transistors using carbon doped silicon layers to substantially reduce the diffusion of a doped screen layer formed below a substantially undoped channel layer includes forming an in-situ epitaxial carbon doped silicon substrate that is doped to form the screen layer in the carbon doped silicon substrate and forming the substantially undoped silicon layer above the carbon doped silicon substrate. The method may include implanting carbon below the screen layer and forming a thin layer of in-situ epitaxial carbon doped silicon above the screen layer. The screen layer may be formed either in a silicon substrate layer or the carbon doped silicon substrate.
摘要:
An integrated circuit device can include a plurality of test elements, each comprising at least one first switch coupled between a node within a tested section and an intermediate node, a test switch coupled between the intermediate node and a forced voltage node, and a second switch coupled between the intermediate node and an output node; wherein the forced voltage node is coupled to receive a forced voltage substantially the same as a test voltage applied to the output node in a test mode.
摘要:
Digital circuits are disclosed that may include multiple transistors having controllable current paths coupled between first and second logic nodes. One or more of the transistors may have a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region. Resulting reductions in threshold voltage variation may improve digital circuit performance. Logic circuit, static random access memory (SRAM) cell, and passgate embodiments are disclosed.
摘要:
A junction field effect transistor includes a channel region, a gate region coupled to the channel region, a well tap region coupled to the gate region and the channel region, and a well region coupled to the well tap region and the channel region. A double gate operation is achieved by this structure as a voltage applied to the gate region is also applied to the well region through the well tap region in order to open the channel from both the gate region and the well region.
摘要:
A suite of novel structures and methods is provided to reduce power consumption in a wide array of electronic devices and systems. Some of these structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. As will be discussed, some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. There are many ways to configure the DDC to achieve different benefits, and additional structures and methods presented herein can be used alone or in conjunction with the DDC to yield additional benefits.
摘要:
A semiconductor device comprises a partially depleted semiconductor-on-insulator structure having both a three terminal JFET and a four terminal JFET constructed thereon. The four terminal JFET comprises a source region, a drain region, a channel region, a front gate region, and a back gate region formed in a semiconductor layer of the partially depleted semiconductor-on-insulator structure. The three terminal JFET comprises a source region formed in the semiconductor layer of the partially depleted semiconductor-on-insulator structure, and a drain region spaced apart from the source region and formed in the semiconductor layer of the partially depleted semiconductor-on-insulator structure. The three terminal JFET further comprises a channel region between the source region and the drain region and formed in the semiconductor layer of the partially depleted semiconductor-on-insulator structure. The three terminal JFET also comprises a gate region formed in the semiconductor layer of the partially depleted semiconductor-on-insulator structure. A gate-to-channel junction of the three terminal JFET is formed deep enough in the semiconductor layer such that the channel region of the three terminal JFET abuts an insulating layer of the semiconductor-on-insulator structure.
摘要:
A memory device including a static random access memory (SRAM) cell comprising junction field effect transistors (JFETs) has been disclosed. The memory cell includes a first bipolar junction transistor (BJT) for driving a bit line at logic levels having a potential outside the potential range in which the SRAM cell operates. An amplifier including a level translator circuit provides a level shifting operation on the data provided by the bit line to provide level shifted data having a voltage swing within the potential range in which the SRAM cell operates. The level translator circuit includes a second BJT. In this way, fast read operation of a SRAM cell comprising JFETs may be provided.