摘要:
Provided are methods and systems for providing oxygen doped silicon carbide. A layer of oxygen doped silicon carbide can be provided under process conditions that employ silicon-containing precursors that have one or more silicon-hydrogen bonds and/or silicon-silicon bonds. The silicon-containing precursors also have one or more silicon-oxygen bonds and/or silicon-carbon bonds. One or more radical species in a substantially low energy state can react with the silicon-containing precursors to form the oxygen doped silicon carbide. The one or more radical species can be formed in a remote plasma source.
摘要:
A highly tensile dielectric layer is generated on a heat sensitive substrate while not exceeding thermal budget constraints. Ultraviolet (UV) irradiation is used to produce highly tensile films to be used, for example, in strained NMOS transistor architectures. UV curing of as-deposited PECVD silicon nitride films, for example, has been shown to produce films with stresses of at least 1.65 E10 dynes/cm2. Other dielectric capping layer film materials show similar results. In transistor implementations, the stress from a source/drain region capping layer composed of such a film is uniaxially transferred to the NMOS channel through the source-drain regions to create tensile strain in the NMOS channel.
摘要:
Provided are methods and systems for providing oxygen doped silicon carbide. A layer of oxygen doped silicon carbide can be provided under process conditions that employ silicon-containing precursors that have one or more silicon-hydrogen bonds and/or silicon-silicon bonds. The silicon-containing precursors also have one or more silicon-oxygen bonds and/or silicon-carbon bonds. One or more radical species in a substantially low energy state can react with the silicon-containing precursors to form the oxygen doped silicon carbide. The one or more radical species can be formed in a remote plasma source.
摘要:
A highly tensile dielectric layer is generated on a heat sensitive substrate while not exceeding thermal budget constraints. Cascaded ultraviolet (UV) irradiation is used to produce highly tensile films to be used, for example, in strained NMOS transistor architectures. Successive UV radiation of equal or shorter wavelengths with variable intensity and duration selectively breaks bonds in the Si—N matrix and minimizes shrinkage and film relaxation. Higher tensile stress than a non-cascaded approach may be obtained.
摘要:
Described are methods of making silicon nitride (SiN) materials and other silicon-containing films, including carbon-containing and/or oxygen-containing films such as SiCN (also referred to as SiNC), SiON and SiONC films, on substrates. According to various embodiments, the methods involve electromagnetic radiation-assisted activation of one or more reactants. In certain embodiments, for example, the methods involve ultraviolet (UV) activation of vapor phase amine coreactants. The methods can be used to deposit silicon-containing films, including SiN and SiCN films, at temperatures below about 400° C.
摘要:
Treatment of carbon-containing low-k dielectric with UV radiation and a reducing agent enables process-induced damage repair. Also, treatment with a reducing agent and UV radiation is effective to clean a processed wafer surface by removal of metal oxide (e.g., copper oxide) and/or organic residue of CMP slurry from the planarized surface of a processed wafer with or without low-k dielectric. The methods of the invention are particularly applicable in the context of damascene processing to recover lost low-k property of a dielectric damaged during processing, either pre-metalization, post-planarization, or both, and/or provide effective post-planarization surface cleaning to improve adhesion of subsequently applied dielectric barrier and/or other layers.
摘要:
Described are methods of making silicon nitride (SiN) materials and other silicon-containing films, including carbon-containing and/or oxygen-containing films such as SiCN (also referred to as SiNC), SiON and SiONC films, on substrates. According to various embodiments, the methods involve electromagnetic radiation-assisted activation of one or more reactants. In certain embodiments, for example, the methods involve ultraviolet (UV) activation of vapor phase amine coreactants. The methods can be used to deposit silicon-containing films, including SiN and SiCN films, at temperatures below about 400° C.
摘要:
A highly tensile dielectric layer is generated on a heat sensitive substrate while not exceeding thermal budget constraints. Cascaded ultraviolet (UV) irradiation is used to produce highly tensile films to be used, for example, in strained NMOS transistor architectures. Successive UV radiation of equal or shorter wavelengths with variable intensity and duration selectively breaks bonds in the Si—N matrix and minimizes shrinkage and film relaxation. Higher tensile stress than a non-cascaded approach may be obtained.
摘要:
Described are methods of making silicon nitride (SiN) materials and other silicon-containing films, including carbon-containing and/or oxygen-containing films such as SiCN (also referred to as SiNC), SiON and SiONC films, on substrates. According to various embodiments, the methods involve electromagnetic radiation-assisted activation of one or more reactants. In certain embodiments, for example, the methods involve ultraviolet (UV) activation of vapor phase amine coreactants. The methods can be used to deposit silicon-containing films, including SiN and SiCN films, at temperatures below about 400° C.
摘要:
Treatment of carbon-containing low-k dielectric with UV radiation and a reducing agent enables process-induced damage repair. Also, treatment with a reducing agent and UV radiation is effective to clean a processed wafer surface by removal of metal oxide (e.g., copper oxide) and/or organic residue of CMP slurry from the planarized surface of a processed wafer with or without low-k dielectric. The methods of the invention are particularly applicable in the context of damascene processing to recover lost low-k property of a dielectric damaged during processing, either pre-metalization, post-planarization, or both, and/or provide effective post-planarization surface cleaning to improve adhesion of subsequently applied dielectric barrier and/or other layers.