Abstract:
The present application provides polynucleotides comprising 5′-tails with sequence segments useful for the detection of target nucleic acid sequences, and methods for their use in detecting target nucleic acids. The polynucleotides are used to amplify a subsequence of a target nucleic acid in the presence of one or more ribonucleotides. The ribonucleotides are incorporated into amplification products at regular intervals complementary to the 5′-tail sequence segments. Cleavage of amplification products at the bond immediately 3′ to incorporated ribonucleotides produces detectably distinct fragments indicative of the presence or absence of a target nucleic acid.
Abstract:
The invention provides a method of determining the nucleotide sequence of a target nucleic acid using a reversibly terminating nucleotide that is modified at the 2′ position.
Abstract:
The present invention is directed to a process for amplifying any target nucleic acid sequence contained in a nucleic acid or mixture thereof using a thermostable enzyme. The process comprises treating separate complementary strands of the nucleic acid with a molar excess of two oligonucleotide primers, extending the primers with a thermostable enzyme to form complementary primer extension products which act as templates for synthesizing the desired nucleic acid sequence, and detecting the sequence so amplified. The steps of the reaction can be repeated as often as desired and involve temperature cycling to effect hybridization, promotion of activity of the enzyme, and denaturation of the hybrids formed.
Abstract:
A purified thermostable nucleic acid polymerase is obtained that has unique characteristics. Preferably the nucleic acid polymerase is DNA polymerase isolated from a Thermus aquaticus species and has a molecular weight of about 86,000-95,000 daltons. The thermostable nucleic acid polymerase may be native or recombinant and may be used in a temperature-cycling chain reaction wherein at least one nucleic acid sequence is amplified in quantity from an existing sequence with the aid of selected primers and nucleotide triphosphates. The nucleic acid polymerase is preferably stored in a buffer containing non-ionic detergents that lends stability to the nucleic acid polymerase. A preferred buffer contains glycerol, polyoxyethylated sorbitan monolaurate, ethoxylated nonyl phenol and gelatin.
Abstract:
The present invention is directed to a process for amplifying any target nucleic acid sequence contained in a nucleic acid or mixture thereof using a thermostable enzyme. The process comprises treating separate complementary strands of the nucleic acid with a molar excess of two oligonucleotide primers, extending the primers with a thermostable enzyme to form complementary primer extension products which act as templates for synthesizing the desired nucleic acid sequence, and detecting the sequence so amplified. The steps of the reaction can be repeated as often as desired and involve temperature cycling to effect hybridization, promotion of activity of the enzyme, and denaturation of the hybrids formed.
Abstract:
The present invention relates to thermostable DNA polymerases which exhibit a different level of 5' to 3' exonuclease activity than their respective native polymerases. Particular conserved amino acid domains in thermostable DNA polymerases are mutated or deleted to alter the 5' to 3' exonuclease activity of the polymerases. The present invention also relates to means for isolating and producing such altered polymerases.
Abstract:
The present invention provides the nucleotide sequences of Acetobacter operons, cdg operons encoding genes for the biosynthesis and degradation of cyclic diguanosine monophosphate (c-di-GMP). Specifically, the nucleotide sequences and deduced amino acid sequences of 3 phosphodiesterases isozymes, 3 diguanylate cyclase isozymes, and 2 polypeptides of unidentified function are provided. Also provided for are various strains of microorganisms, including Acetobacter cells genetically manipulated so as to produce elevated and/or reduced levels of one or more cdg operon encoded proteins.
Abstract:
Methods are provided for distinguishing between RNA and DNA templates in an amplification reaction. In a preferred embodiment of the invention, the amplification reaction is a PCR and the reaction is catalyzed by a thermostable DNA polymerase or both reverse transcription and amplification of a target RNA. The invention particularly relates to selective amplification of RNA in the presence of homologous DNA, for example, HIV nucleic acids.
Abstract:
Methods are provided for the replication and amplification of RNA sequences by thermoactive DNA polymerases. In a preferred embodiment, high temperature reverse transcription is coupled to nucleic acid amplification in a one tube, one enzyme procedure using a thermostable DNA polymerase. Methods for eliminating carry over contamination of amplifications due to prior reverse transcription reactions are also provided. Reagents particularly suited for the methods of the present invention are provided.
Abstract:
A purified thermostable enzyme is derived from the eubacterium Thermotoga maritima. The enzyme has a molecular weight of about 97 kilodaltons and DNA polymerase I activity. The enzyme can be produced from native or recombinant host cells and can be used with primers and nucleoside triphosphates in a temperaturecycling chain reaction where at least one nucleic acid sequence is amplified in quantity from an existing sequence.