摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
摘要:
A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
摘要:
P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 &OHgr;cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.
摘要:
An electro-optical device with a transparent substrate is produced by epitaxially first growing the active device layers, followed by growth of the transparent substrate layer on an opaque wafer. The opaque wafer is subsequently removed. The active device layers have dopants with sufficiently low diffusivities that their electronic characteristics are not adversely affected by long exposure to elevated temperature during the growth of the transparent substrate layer. In a liquid phase epitaxy (LPE) method, a repeated temperature cycle technique is used where the temperature is repeatedly raised each time after cooling to provide a large cooling range for growing a sufficiently thick substrate layer or a series of device layers. In between growths and during the temperature heat-up periods, the device is stored within the LPE reactor. When a epitaxial layer is oxidizable, a non-oxidizable cap is temporarily grown on it in between growths and during the temperature heat up periods. The cap is subsequently removed by melting back at an elevated temperature just prior to the growth of a next layer. The technique may also be used for growing a transparent substrate which is lattice mismatched with the active deivce layers.
摘要:
A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
摘要:
A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent optical element (e.g., a lens or an optical concentrator) to a light emitting device comprising an active region includes elevating a temperature of the optical element and the stack and applying a pressure to press the optical element and the light emitting device together. A block of optical element material may be bonded to the light emitting device and then shaped into an optical element. Bonding a high refractive index optical element to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 Ωcm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.
摘要:
An electro-optical device with a transparent substrate is produced by epitaxially first growing the device layers, followed by that of the transparent substrate layer on an opaque wafer. The opaque wafer is subsequently removed. The device layers have dopants with sufficient low diffusivities that their electronic characteristics are not adversely affected by long exposure to elevated temperature during the growth of the transparent substrate layer. In a liquid phase epitaxy (LPE) method, a repeated temperature cycle technique is used where the temperature is repeatedly raised up each time after cooling to provide a large cooling range for growing a sufficiently thick substrate layer or a series of device layers. In between growths and during the temperature heat-up periods, the device is stored within the LPE reactor. In other embodimens, the device is either temporarily removed from the LPE reactor or is transferred to another reactor. When a epitaxial layer is oxidizable, a non-oxidizable cap is temporarily grown on it in between growths and during the temperature heat-up periods. The cap is subsequently removed by melting back at an elevated temperature just prior to the growth of a next layer.