Abstract:
The present invention is related to a family of Group 4 metal precursors represented by the formula: M(OR1)2(R2C(O)C(R3)C(O)OR1)2 wherein M is a Group 4 metals of Ti, Zr, or Hf; wherein R1 is selected from the group consisting of a linear or branched C1-10 alkyl and a C6-12 aryl, preferably methyl, ethyl or n-propyl; R2 is selected from the group consisting of branched C3-10 alkyls, preferably iso-propyl, tert-butyl, sec-butyl, iso-butyl, or tert-amyl and a C6-12 aryl; R3 is selected from the group consisting of hydrogen, C1-10 alkyls, and a C6-12 aryl, preferably hydrogen. In a preferred embodiment of this invention, the precursor is a liquid or a solid with a melting point below 60° C.
Abstract:
We have used the state-of-the-art computational chemistry techniques to identify adhesion promoting layer materials that provide good adhesion of copper seed layer to the adhesion promoting layer and the adhesion promoting layer to the barrier layer. We have identified factors responsible for providing good adhesion of copper layer on various metallic surfaces and circumstances under which agglomeration of copper film occur. Several promising adhesion promoting layer materials based on chromium alloys have been predicted to be able to significantly enhance the adhesion of copper films. Chromium containing complexes of a polydentate β-ketoiminate have been identified as chromium containing precursors to make the alloys with chromium.
Abstract:
A plurality of metal-containing complexes of a polydentate beta-ketoiminate, one embodiment of which is represented by the structure are shown: wherein M is a metal such as calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, vanadium, tungsten, manganese, cobalt, iron, nickel, ruthenium, zinc, copper, palladium, platinum, iridium, rhenium, osmium; wherein R1 is selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, and aryl, having from 1 to 10 carbon atoms; R2 can be from the group consisting of hydrogen, alkyl, alkoxy, cycloaliphatic, and aryl; R3 is linear or branched selected from the group consisting of alkylene, fluoroalkyl, cycloaliphatic, and aryl; R4 is an alkylene bridge; R5-6 are individually linear or branched selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, aryl, and they can be connected to form a ring containing carbon, oxygen, or nitrogen atoms; n is an integer equal to the valence of the metal M.
Abstract translation:多结晶β-酮亚胺酸盐的多金属络合物,其一个实施方案由结构表示:其中M是金属如钙,锶,钡,钪,钇,镧,钛,锆,钒 钨,锰,钴,铁,镍,钌,锌,铜,钯,铂,铱,铼,锇; 其中R 1选自具有1至10个碳原子的烷基,氟烷基,脂环族和芳基; R 2可以来自氢,烷基,烷氧基,脂环族和芳基; R 3是直链或支链的,选自亚烷基,氟代烷基,脂环族和芳基; R 4是亚烷基桥; R 5-10各自为直链或支链,选自烷基,氟烷基,脂环族,芳基,并且它们可连接形成含有碳,氧或氮原子的环; n是等于金属M的化合价的整数。
Abstract:
A material for the storage of hydrogen is provided comprising single wall carbon nanotubes (SWNT), wherein the majority of the diameters of the single wall carbon nanotubes of the assembly range from 0.4 to 1.0 nanometers (nm), and the average length is less than or equal to 1000 nm, or the diameters of the single wall carbon nanotubes of the assembly range from 0.4 to 1.0 nanometers (nm), and the heat (−ΔH) of hydrogen adsorption of the material is within the range from 4 kcal/mole H2 to 8 kcal/mole H2. Processes for the storage and release of hydrogen using the materials are disclosed.
Abstract translation:提供了用于储存氢的材料,其包括单壁碳纳米管(SWNT),其中组合物的单壁碳纳米管的大部分直径范围为0.4至1.0纳米(nm),平均长度小于 或者等于1000nm,或组合物的单壁碳纳米管的直径范围为0.4至1.0纳米(nm),并且材料的氢吸附的热(-DeltaH)在4kcal /摩尔的范围内 H 2〜8kcal / mole H 2。 公开了使用该材料储存和释放氢的方法。
Abstract:
Described herein are precursors and methods of forming dielectric films. In one aspect, there is provided a silicon precursor having the following formula I: wherein R1 is independently selected from hydrogen, a linear or branched C1 to C6 alkyl, a linear or branched C2 to C6 alkenyl, a linear or branched C2 to C6 alkynyl, a C1 to C6 alkoxy, a C1 to C6 dialkylamino and an electron withdrawing group and n is a number selected from 0, 1, 2, 3, 4, and 5; and R2 is independently selected from hydrogen, a linear or branched C1 to C6 alkyl, a linear or branched C2 to C6 alkenyl, a linear or branched C2 to C6 alkynyl, a C1 to C6 alkoxy, a C1 to C6 dialkylamino, a C6 to C10 aryl, a linear or branched C1 to C6 fluorinated alkyl, and a C4 to C10 cyclic alkyl group.
Abstract:
The present invention is related to a family of Group 4 metal precursors represented by the formula: M(OR1)2(R2C(O)C(R3)C(O)OR1)2 wherein M is a Group 4 metals of Ti, Zr, or Hf; wherein R1 is selected from the group consisting of a linear or branched C1-10 alkyl and a C6-12 aryl, preferably methyl, ethyl or n-propyl; R2 is selected from the group consisting of branched C3-10 alkyls, preferably iso-propyl, tert-butyl, sec-butyl, iso-butyl, or tert-amyl and a C6-12 aryl; R3 is selected from the group consisting of hydrogen, C1-10 alkyls, and a C6-12 aryl, preferably hydrogen. In a preferred embodiment of this invention, the precursor is a liquid or a solid with a melting point below 60° C.
Abstract:
Metal-containing complexes of a tridentate beta-ketoiminate, one embodiment of which is represented by the structure: wherein M is a metal such as calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, vanadium, tungsten, manganese, cobalt, iron, nickel, ruthenium, zinc, copper, palladium, platinum, iridium, rhenium, osmium; R1 is selected from the group consisting of alkyl, alkoxyalkyl, fluoroalkyl, cycloaliphatic, and aryl, having 1 to 10 carbon atoms; R2 is selected from the group consisting of hydrogen, alkyl, alkoxy, cycloaliphatic, and aryl; R3 is linear or branched selected from the group consisting of alkyl, alkoxyalkyl, fluoroalkyl, cycloaliphatic, and aryl; R4 is a branched alkylene bridge with at least one chiral center; R5-6 are individually linear or branched selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, aryl, and can be connected to form a ring containing carbon, oxygen, or nitrogen atoms; n is an integer equal to the valence of the metal M.
Abstract:
The present invention is a process for spin-on deposition of a silicon dioxide-containing film under oxidative conditions for gap-filling in high aspect ratio features for shallow trench isolation used in memory and logic circuit-containing semiconductor substrates, such as silicon wafers having one or more integrated circuit structures contained thereon, comprising the steps of: providing a semiconductor substrate having high aspect ratio features; contacting the semiconductor substrate with a liquid formulation comprising a low molecular weight aminosilane; forming a film by spreading the liquid formulation over the semiconductor substrate; heating the film at elevated temperatures under oxidative conditions. Compositions for this process are also set forth.
Abstract:
Metal-containing complexes of a tridentate beta-ketoiminate, one embodiment of which is represented by the structure: wherein M is a metal such as calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, vanadium, tungsten, manganese, cobalt, iron, nickel, ruthenium, zinc, copper, palladium, platinum, iridium, rhenium, osmium; R1 is selected from the group consisting of alkyl, alkoxyalkyl, fluoroalkyl, cycloaliphatic, and aryl, having 1 to 10 carbon atoms; R2 is selected from the group consisting of hydrogen, alkyl, alkoxy, cycloaliphatic, and aryl; R3 is linear or branched selected from the group consisting of alkyl, alkoxyalkyl, fluoroalkyl, cycloaliphatic, and aryl; R4 is a branched alkylene bridge with at least one chiral center; R5-6 are individually linear or branched selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, aryl, and can be connected to form a ring containing carbon, oxygen, or nitrogen atoms; n is an integer equal to the valence of the metal M.
Abstract:
Organometallic precursor complexes containing a metal and ligands containing electron withdrawing groups are disclosed. The complexes are adapted to undergo exothermic adsorption on a fully passivated diffusion barrier layer and on a metal layer deposited on the diffusion barrier layer and to undergo exothermic reduction on the diffusion barrier layer and the metal layer. The metal is preferably copper. Use of the complexes in atomic layer deposition is also disclosed.