Abstract:
Gate-all-around integrated circuit structures having strained dual nanowire/nanoribbon channel structures, and methods of fabricating gate-all-around integrated circuit structures having strained dual nanowire/nanoribbon channel structures, are described. For example, an integrated circuit structure includes a first vertical arrangement of nanowires above a substrate. Individual ones of the first vertical arrangement of nanowires are biaxially tensilely strained. The integrated circuit structure also includes a second vertical arrangement of nanowires above the substrate. Individual ones of the second vertical arrangement of nanowires are biaxially compressively strained. The individual ones of the second vertical arrangement of nanowires are laterally staggered with the individual ones of the first vertical arrangement of nanowires.
Abstract:
Embodiments herein describe techniques for a thin-film transistor (TFT), which may include a substrate and a transistor above the substrate. The transistor includes a channel layer above the substrate, where the channel layer includes a first region and a second region, and the first region has a first dopant concentration. A gate electrode is above the first region of the channel layer and separated from the channel layer by a gate dielectric layer. A spacer is next to the gate electrode to separate the gate electrode from a drain electrode or a source electrode above the channel layer. The spacer includes a dopant material in contact with the second region of the channel layer, and the second region has a second dopant concentration different from the first dopant concentration in the first region. Other embodiments may be described and/or claimed.
Abstract:
Embodiments herein describe techniques for a thin-film transistor (TFT), which may include a substrate oriented in a horizontal direction and a transistor above the substrate. The transistor includes a gate electrode above the substrate, a gate dielectric layer around the gate electrode, and a channel layer around the gate dielectric layer, all oriented in a vertical direction substantially orthogonal to the horizontal direction. Furthermore, a source electrode or a drain electrode is above or below the channel layer, separated from the gate electrode, and in contact with a portion of the channel layer. Other embodiments may be described and/or claimed.
Abstract:
Embodiments herein describe techniques for a semiconductor device including a substrate and a transistor above the substrate. The transistor includes a channel layer above the substrate, a conductive contact stack above the substrate and in contact with the channel layer, and a gate electrode separated from the channel layer by a gate dielectric layer. The conductive contact stack may be a drain electrode or a source electrode. In detail, the conductive contact stack includes at least a metal layer, and at least a metal sealant layer to reduce hydrogen diffused into the channel layer through the conductive contact stack. Other embodiments may be described and/or claimed.
Abstract:
Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
Abstract:
Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for stacking transistors of a memory device. In one embodiment, an apparatus includes a semiconductor substrate, a plurality of fin structures formed on the semiconductor substrate, wherein an individual fin structure of the plurality of fin structures includes a first isolation layer disposed on the semiconductor substrate, a first channel layer disposed on the first isolation layer, a second isolation layer disposed on the first channel layer, and a second channel layer disposed on the second isolation layer, and a gate terminal capacitively coupled with the first channel layer to control flow of electrical current through the first channel layer for a first transistor and capacitively coupled with the second channel layer to control flow of electrical current through the second channel layer for a second transistor. Other embodiments may be described and/or claimed.
Abstract:
III-N transistors with recessed gates. An epitaxial stack includes a doped III-N source/drain layer and a III-N etch stop layer disposed between a the source/drain layer and a III-N channel layer. An etch process, e.g., utilizing photochemical oxidation, selectively etches the source/drain layer over the etch stop layer. A gate electrode is disposed over the etch stop layer to form a recessed-gate III-N HEMT. At least a portion of the etch stop layer may be oxidized with a gate electrode over the oxidized etch stop layer for a recessed gate III-N MOS-HEMT including a III-N oxide. A high-k dielectric may be formed over the oxidized etch stop layer with a gate electrode over the high-k dielectric to form a recessed gate III-N MOS-HEMT having a composite gate dielectric stack.
Abstract:
A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
Abstract:
An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.