摘要:
A metal precursor and a method comprising decomposing a metal precursor on an integrated circuit device; and forming a metal from the metal precursor, wherein the metal precursor is selected from the group consisting of (i) a Co2(CO)6(R1C≡CR2), wherein R1 and R2 are individually selected from a straight or branched monovalent hydrocarbon group have one to six carbon atoms that may be interrupted and substituted; (ii) a mononuclear cobalt carbonyl nitrosyl; (iii) a cobalt carbonyl bonded to one of a boron, indium, germanium and tin moiety; (iv) a cobalt carbonyl bonded to a mononuclear or binuclear allyl; and (v) a cobalt(II) complex comprising nitrogen-based supporting ligands.
摘要:
Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.
摘要:
Incompatible materials, such as copper and nitrided barrier layers, may be adhered more effectively to one another. In one embodiment, a precursor of copper is deposited on the nitrided barrier. The precursor is then converted, through the application of energy, to copper which could not have been as effectively adhered to the barrier in the first place.
摘要:
Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.
摘要:
An iodine-doped ruthenium barrier layer for use with copper interconnects within integrated circuits is formed using novel, iodine-containing ruthenium precursors in an ALD or CVD process. Ruthenium precursors that may be used include ruthenium containing carbonyls, arenes, cyclopentadienyls, and certain other ruthenium containing compounds. The ruthenium precursors include iodine to catalyze a subsequent copper metal deposition and to smooth the surface of the ruthenium layer. The iodine concentration across the thickness of the ruthenium barrier layer may be constant or may be graded.
摘要:
Incompatible materials, such as copper and nitrided barrier layers, may be adhered more effectively to one another. In one embodiment, a precursor of copper is deposited on the nitrided barrier. The precursor is then converted, through the application of energy, to copper which could not have been as effectively adhered to the barrier in the first place.
摘要:
An iridium encased copper interconnect comprises an iridium liner formed within a trench in a dielectric layer, wherein the iridium liner is formed directly on the dielectric layer, a copper interconnect formed on the iridium liner, and an iridium capping layer formed on the copper interconnect. The iridium encased copper interconnect may be fabricated by providing a semiconductor substrate in a reactor, wherein the semiconductor substrate includes a trench etched into a dielectric layer, pulsing trimethylaluminum into the reactor proximate to the semiconductor substrate, pulsing an iridium precursor into the reactor proximate to the semiconductor substrate, wherein the trimethylaluminum enables an iridium species to deposit directly on the dielectric layer, depositing a copper seed layer on the iridium species layer using an electroless deposition process, and depositing a bulk copper layer on the copper seed layer using an electroplating process.
摘要:
A method including applying an electric charge to a substrate in a chamber; introducing an organometallic substituent into the chamber, the organometallic substituent including a metal ligand and an organic ligand; and depositing a metal film by reducing the metal ligand of the organometallic substituent. A method including applying a removable electric charge to a substrate; in the presence of the applied electric charge, introducing an organometallic substituent into the chamber, the organometallic substituent including a metal ligand and an organic ligand; and depositing a metal film by reducing the metal ligand of the organometallic substituent. A method including introducing an organometallic substituent into the chamber, the organometallic substituent including a metal ligand and an organic ligand; and depositing a metal film by reducing the metal ligand of the organometallic substituent with an externally applied electric charge.
摘要:
A method including introducing a fluorine-free organometallic precursor in the presence of a substrate; and forming a conductive layer including a moiety of the organometallic precursor on the substrate according to an atomic layer or chemical vapor deposition process. A method including forming an opening through a dielectric layer to a contact point; introducing a fluorine-free copper film precursor and a co-reactant; and forming a copper-containing seed layer in the opening. A system including a computer including a microprocessor electrically coupled to a printed circuit board, the microprocessor including conductive interconnect structures formed from fluorine-free organometallic precursor.
摘要:
Described herein are metal gate electrode stacks including a low resistance metal cap in contact with a metal carbonitride diffusion barrier layer, wherein the metal carbonitride diffusion barrier layer is tuned to a particular work function to also serve as a work function metal for a pMOS transistor. In an embodiment, the work function-tuned metal carbonitride diffusion barrier prohibits a low resistance metal cap layer of the gate electrode stack from migrating into the MOS junction. In a further embodiment of the present invention, the work function of the metal carbonitride barrier film is modulated to be p-type with a pre-selected work function by altering a nitrogen concentration in the film.