Superconducting structure with layers of niobium nitride and aluminum
nitride
    1.
    发明授权
    Superconducting structure with layers of niobium nitride and aluminum nitride 失效
    具有氮化铌和氮化铝层的超导结构

    公开(公告)号:US4844989A

    公开(公告)日:1989-07-04

    申请号:US27928

    申请日:1987-03-19

    CPC classification number: H01L39/125 H01L39/223

    Abstract: A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

    Abstract translation: 通过在衬底上沉积氮化铝和氮化铌的交替层来形成超导结构。 沉积方法包括直流磁控管反应溅射,磁控管反应溅射,薄膜扩散,化学气相沉积和离子束沉积。 已经构建了具有20至350埃厚度的氮化铌和氮化铝层的结构。 已经将沉积厚度约为70埃的氮化铌薄膜和沉积厚度约为20埃的氮化铝实现了最佳结果。 由氮化铝单层分离的这种氮化铌膜可用于形成约瑟夫逊结。 当沉积在固定的基板或柔性条上以形成承载电流的体超导体时,氮化铌和氮化铝的30个或更多个交替层的结构是有用的。 它们也适用于电压控制的微波能量源。

    Implant-patterned superconductive device and a method for indirect ion implantation of superconductive films
    2.
    发明授权
    Implant-patterned superconductive device and a method for indirect ion implantation of superconductive films 失效
    植入物图案超导装置和超导膜间接离子注入的方法

    公开(公告)号:US06335108B1

    公开(公告)日:2002-01-01

    申请号:US09657203

    申请日:2000-09-07

    CPC classification number: H01L39/2464 H01L39/249 Y10S428/93 Y10S505/73

    Abstract: An implant patterned superconductive device and a method for indirect implant-patterning of oxide superconducting materials is provided. The method forms a device having an oxide superconducting layer on a substrate, deposits a passivation layer atop the oxide superconducting layer, and implants chemical impurities in a selected portion of the superconducting layer through the passivation layer. This modifies the conductivity of the selected portion of the oxide superconducting layer and electrically isolates the selected portion from the non-selected portion of the oxide superconducting layer. The passivation layer is made of a material less susceptible to implant damage than the oxide superconducting layer to allow inhibition of the oxide superconducting layer while protecting the crystalline structure of the top surface of the oxide superconducting layer and keeping it planarized. The passivation layer is preferably a dielectric material having a crystal lattice structure which is compatible to that of the oxide superconducting layer. The method is especially efficient for the fabrication of devices with multiple layers of oxide superconductive materials because it does not degrade the epitaxial template's crystalline structure.

    Abstract translation: 提供了一种植入物图案超导装置和用于氧化物超导材料的间接注入图案化的方法。 该方法形成在衬底上具有氧化物超导层的器件,在氧化物超导层顶部沉积钝化层,并通过钝化层在超导层的选定部分中埋入化学杂质。 这改变了氧化物超导层的选定部分的电导率,并且将所选择的部分与氧化物超导层的未选择部分电隔离。 钝化层由比氧化物超导层更不易受植入物损伤的材料制成,以允许抑制氧化物超导层,同时保护氧化物超导层的顶表面的晶体结构并保持其平坦化。 钝化层优选是具有与氧化物超导层的晶格结构相容的晶格结构的电介质材料。 该方法对于具有多层氧化物超导材料的器件的制造特别有效,因为它不会降解外延模板的晶体结构。

    Superconductive quantum interference device for digital logic circuits
    4.
    发明授权
    Superconductive quantum interference device for digital logic circuits 失效
    用于数字逻辑电路的超导量子干涉装置

    公开(公告)号:US5863868A

    公开(公告)日:1999-01-26

    申请号:US937372

    申请日:1997-09-25

    CPC classification number: H01L39/225

    Abstract: A SQUID 10 was multiple junctions, each junction allowing a critical current to flow therethrough. The SQUID 10 comprises a laminar structure including: (a) a substantially planar substrate 12; (b) a first high temperature superconductive layer 14 of substantially uniform thickness deposited on the substrates; (c) a dielectric layer 16 deposited on the first superconductive layer 14, the dielectric layer 16 comprising a planar level segment 18 having two ramp segments defining SQUID junctions at opposing ends 20 and defining SQUID hole; and (d) a second high temperature superconductive layer 24 of substantially uniform thickness deposited on the dielectric layer 16, the second high temperature superconductive layer 24 covering all three segments of the dielectric layer 16. A magnetic field substantially parallel to the substrate applied to the SQUID hole modulates a critical current flowing through the junctions while minimizing magnetic field penetration into the junctions and minimizing SQUID loop inductance.

    Abstract translation: SQUID 10是多个连接点,每个连接点允许临界电流流过。 SQUID 10包括层状结构,包括:(a)基本平坦的基板12; (b)沉积在基板上的基本均匀厚度的第一高温超导层14; (c)沉积在第一超导层14上的电介质层16,介电层16包括平坦的电平段18,该平面电平段18具有在相对端20处限定SQUID结并限定SQUID孔的两个斜坡段; 和(d)沉积在电介质层16上的基本上均匀厚度的第二高温超导层24,第二高温超导层24覆盖电介质层16的所有三个段。基本上平行于衬底的磁场施加到 SQUID空穴调制流过结的临界电流,同时最小化磁场穿入接头并最小化SQUID回路电感。

    Using ion implantation to create normal layers in superconducting-normal-superconducting Josephson junctions
    5.
    发明授权
    Using ion implantation to create normal layers in superconducting-normal-superconducting Josephson junctions 失效
    使用离子注入在超导正常超导约瑟夫逊结中产生正常层

    公开(公告)号:US06188919B1

    公开(公告)日:2001-02-13

    申请号:US09314774

    申请日:1999-05-19

    CPC classification number: H01L39/2496 Y10S505/702

    Abstract: A SNS Josephson junction (10) is provided for use in a superconducting integrated circuit. The SNS junction (10) includes a first high temperature superconducting (HTS) layer (14) deposited and patterned on a substrate (18), such that the first HTS layer (14) is selectively removed to expose a top surface of the substrate (18) as well as to form an angular side surface (22) on the first HTS layer (14) adjacent to the exposed top surface of the substrate (18). Ion implantation is used to form a junction region (12) having non-superconducting properties along the angular side surface (22) of the first HTS layer (14). A second HTS layer (16) is then deposited and patterned over at least a portion of the first HTS layer (14) and the exposed top surface of the substrate (18), thereby forming a SNS Josephson junction.

    Abstract translation: 提供SNS约瑟夫逊结(10)用于超导集成电路。 SNS结(10)包括沉积和图案化在衬底(18)上的第一高温超导(HTS)层(14),使得第一HTS层(14)被选择性地去除以暴露衬底的顶表面 18),并且在与衬底(18)的暴露的顶表面相邻的第一HTS层(14)上形成角度侧表面(22)。 离子注入用于形成沿着第一HTS层(14)的角度侧表面(22)具有非超导特性的结区域(12)。 然后在第一HTS层(14)的至少一部分和衬底(18)的暴露的顶表面上沉积和图案化第二HTS层(16),由此形成SNS约瑟夫逊结。

    Submicron Josephson junction and method for its fabrication
    6.
    发明授权
    Submicron Josephson junction and method for its fabrication 失效
    亚微米约瑟夫逊结及其制造方法

    公开(公告)号:US5286336A

    公开(公告)日:1994-02-15

    申请号:US952011

    申请日:1992-11-02

    CPC classification number: H01L39/223 H01L39/2493 Y10S505/728 Y10S505/832

    Abstract: A Josephson junction and a method for its fabrication in which a laminated junction layer is formed in situ on the side edge of a base electrode contact. The laminated junction layer forms the Josephson junction of the present invention and includes an insulating or barrier layer sandwiched between a superconducting base electrode and a superconducting counter electrode. The Josephson junction is formed on the side edge of the base electrode contact to allow very small junction areas to be fabricated using conventional optical lithographic techniques, such as photolithography. The laminated junction layer is formed in situ, with the three layers of the laminated junction layer being formed successively without removing the device from the controlled atmosphere of the deposition system, to prevent contamination of the junction region.

    Abstract translation: 约瑟夫逊结及其制造方法,其中在基极接触件的侧边缘上原位形成层叠接合层。 层叠结层形成本发明的约瑟夫逊结,并且包括夹在超导基极和超导对电极之间的绝缘或阻挡层。 约瑟夫逊结形成在基极电极接触件的侧边缘上,以允许使用常规光学光刻技术(例如光刻)来制造非常小的结面积。 层叠接合层是原位形成的,层叠结合层的三层依次形成,而不会从沉积系统的受控气氛中移除该装置,以防止接合区域的污染。

    Method for indirect Ion implantation of oxide superconductive films
    8.
    发明授权
    Method for indirect Ion implantation of oxide superconductive films 失效
    氧化物超导膜的间接离子注入方法

    公开(公告)号:US6147032A

    公开(公告)日:2000-11-14

    申请号:US314772

    申请日:1999-05-19

    CPC classification number: H01L39/2464 H01L39/249 Y10S428/93 Y10S505/73

    Abstract: An implant patterned superconductive device and a method for indirect implant-patterning of oxide superconducting materials is provided. The method forms a device having an oxide superconducting layer on a substrate, deposits a passivation layer atop the oxide superconducting layer, and implants chemical impurities in a selected portion of the superconducting layer through the passivation layer. This modifies the conductivity of the selected portion of the oxide superconducting layer and electrically isolates the selected portion from the non-selected portion of the oxide superconducting layer. The passivation layer is made of a material less susceptible to implant damage than the oxide superconducting layer to allow inhibition of the oxide superconducting layer while protecting the crystalline structure of the top surface of the oxide superconducting layer and keeping it planarized. The passivation layer is preferably a dielectric material having a crystal lattice structure which is compatible to that of the oxide superconducting layer. The method is especially efficient for the fabrication of devices with multiple layers of oxide superconductive materials because it does not degrade the epitaxial template's crystalline structure.

    Abstract translation: 提供了一种植入物图案超导装置和用于氧化物超导材料的间接注入图案化的方法。 该方法形成在衬底上具有氧化物超导层的器件,在氧化物超导层顶部沉积钝化层,并通过钝化层在超导层的选定部分中埋入化学杂质。 这改变了氧化物超导层的选定部分的电导率,并且将所选择的部分与氧化物超导层的未选择部分电隔离。 钝化层由比氧化物超导层更不易受植入物损伤的材料制成,以允许抑制氧化物超导层,同时保护氧化物超导层的顶表面的晶体结构并保持其平坦化。 钝化层优选是具有与氧化物超导层的晶格结构相容的晶格结构的电介质材料。 该方法对于具有多层氧化物超导材料的器件的制造特别有效,因为它不会降解外延模板的晶体结构。

Patent Agency Ranking