摘要:
Disclosed are water-soluble nanoparticles. The water-soluble nanoparticles are each surrounded by a multifunctional group ligand including an adhesive region, a cross linking region, and a reactive region. In the water-soluble nanoparticles, the cross-linking region of the multifunctional group ligand is cross-linked with another cross-linking region of a neighboring multifunctional group ligand. Furthermore, the present invention provides a method of producing water-soluble nanoparticles, which includes (1) synthesizing water-insoluble nanoparticles in an organic solvent, (2) dissolving the water insoluble nanoparticles in a first solvent and dissolving water-soluble multifunctional group ligands in a second solvent, (3) mixing the two solutions from the step (2) to substitute surfaces of the water-insoluble nanoparticles with the multifunctional group ligands and dissolving a mixture in an aqueous solution to conduct a separation process, and (4) cross-linking the substituted multifunctional group ligands with each other.
摘要:
Disclosed are a metallic nanoparticle cluster ink and a method for forming a conductive metal pattern using the cluster ink. The metallic nanoparticle cluster ink comprises colloidal metallic nanoparticles and a bifunctional compound. The conductive metal pattern is formed by forming a metallic nanoparticle pattern on a substrate using a mold made from PDMS (poly(dimethylsiloxane) polymer as a stamp, and heat-treating the substrate. Micrometer-sized conductive metal patterns can be easily formed on various substrates in a simple and inexpensive manner without the use of costly systems, thereby being very useful in various industrial fields.
摘要:
This invention relates, in general, to a method of producing magnetic oxide nanoparticles or metal oxide nanoparticles and, more particularly, to a method of producing magnetic or metal oxide nanoparticles, which comprises (1) adding a magnetic or metal precursor to a surfactant or a solvent containing the surfactant to produce a mixed solution, (2) heating the mixed solution to 50-6001 C to decompose the magnetic or metal precursor by heating so as to form the magnetic or metal oxide nanoparticles, and (3) separating the magnetic or metal oxide nanoparticles. Since the method is achieved through a simple process without using an oxidizing agent or a reducing agent, it is possible to simply mass-produce uniform magnetic or metal oxide nanoparticles having desired sizes compared to the conventional method.
摘要:
Disclosed is a method for producing core-shell type metallic nanoparticles involving (i) providing a dispersion of a first metal as nanoparticles in an appropriate organic solvent; (ii) providing a solution of a metallic precursor containing a second metal in an appropriate organic solvent, in which the second metal has a reduction potential higher than that of the first metal; and (iii) combining the dispersion from (i) and the solution from (ii) together to carry out the transmetalation reaction of the first and second metals, thereby forming core-shell type metallic nanoparticles.
摘要:
The present invention relates a T1-T2 dual-modal MRI (magnetic resonance imaging) contrast agent, comprising (a) a first layer consisting of T1 contrast material; (b) a second layer consisting of T2 contrast material; and (c) a separating layer which is present in a space between the first layer and the second layer, and inhibits a reciprocal interference between T1 contrast material and T2 contrast material, and a heat-generating composition and a drug delivery composition having the same. The T1-T2 dual-modal contrast agent of the present invention may generate both T1 and T2 signal and thus observe the signal complementarily, resulting in accurate diagnosis through reduction of misdiagnosis. Further, T1 and T2 MR imaging may be simultaneously obtained by simple operation within the same MR imaging device, enabling to remarkably reduce a diagnosis time and diagnosis cost. In addition, the particle constituting the T1-T2 dual-modal contrast agent of the present invention may be applied to hyperthermia and drug delivery systems.
摘要:
The present invention relates to a heat-generating composition, comprising a hetero-structure nanomaterial which comprises (a) a first material comprising at least one component selected from the group consisting of a metal, a metal chalcogen, a metal pnicogen, an alloy and a multi-component hybrid structure thereof; and (b) a second material comprising at least one component selected from the group consisting of metal, metal chalcogen, metal pnicogen, alloy and the multi-component hybrid structure thereof; wherein the first material is enclosed in the second material; wherein at least one of the first material and the second material comprise a magnetic material. The specific loss power of the present nanomaterial is much higher than that of conventional nanomaterials (e.g., 40-fold higher than commercially accessible Feridex) and may be controlled by changing compositions or ratios of the first material and/or the second material. The heat-generating nanomaterial of the present invention may be used in a variety of application fields, for example cancer hyperthermia.
摘要:
The present invention relates a dual-modality PET (positron emission tomography)/MRI (magnetic resonance imaging) contrast agent, a hybrid nanoparticle comprising: (a) a magnetic signal generating core; (b) a water-soluble multi-functional ligand coated on the signal generating core; and (c) a positron emitting factor linked to the water-soluble multi-functional ligand. The contrast agent of the present invention is the dual-modality contrast agent enabling to perform PET and MR imaging and can effectively obtain images having the merits of PET (excellent sensitivity and high temporal resolution) and MR (high spatial resolution and anatomical information) imaging. The contrast agent of the present invention is very useful for non-invasive and highly sensitive real-time fault-free imaging of various biological events such as cell migration, diagnosis of various diseases (e.g., cancer diagnosis) and drug delivery.
摘要:
This invention relates, in general, to a method of producing magnetic oxide nanoparticles or metal oxide nanoparticles and, more particularly, to a method of producing magnetic or metal oxide nanoparticles, which comprises (1) adding a magnetic or metal precursor to a surfactant or a solvent containing the surfactant to produce a mixed solution, (2) heating the mixed solution to 50-6001 C to decompose the magnetic or metal precursor by heating so as to form the magnetic or metal oxide nanoparticles, and (3) separating the magnetic or metal oxide nanoparticles. Since the method is achieved through a simple process without using an oxidizing agent or a reducing agent, it is possible to simply mass-produce uniform magnetic or metal oxide nanoparticles having desired sizes compared to the conventional method.
摘要:
Disclosed are water-soluble nanoparticles. The water-soluble nanoparticles are each surrounded by a multifunctional group ligand including an adhesive region, a cross linking region, and a reactive region. In the water-soluble nanoparticles, the cross-linking region of the multifunctional group ligand is cross-linked with another cross-linking region of a neighboring multifunctional group ligand. Furthermore, the present invention provides a method of producing water-soluble nanoparticles, which includes (1) synthesizing water-insoluble nanoparticles in an organic solvent, (2) dissolving the water insoluble nanoparticles in a first solvent and dissolving water-soluble multifunctional group ligands in a second solvent, (3) mixing the two solutions from the step (2) to substitute surfaces of the water-insoluble nanoparticles with the multifunctional group ligands and dissolving a mixture in an aqueous solution to conduct a separation process, and (4) cross-linking the substituted multifunctional group ligands with each other.
摘要:
The present invention relates to a heat-generating composition, comprising a hetero-structure nanomaterial which comprises (a) a first material comprising at least one component selected from the group consisting of a metal, a metal chalcogen, a metal pnicogen, an alloy and a multi-component hybrid structure thereof; and (b) a second material comprising at least one component selected from the group consisting of metal, metal chalcogen, metal pnicogen, alloy and the multi-component hybrid structure thereof; wherein the first material is enclosed in the second material; wherein at least one of the first material and the second material comprise a magnetic material. The specific loss power of the present nanomaterial is much higher than that of conventional nanomaterials (e.g., 40-fold higher than commercially accessible Feridex) and may be controlled by changing compositions or ratios of the first material and/or the second material. The heat-generating nanomaterial of the present invention may be used in a variety of application fields, for example cancer hyperthermia.