Abstract:
In a semiconductor device in which a thin film containing a metal oxide is formed on a semiconductor element, the thin film is an aggregate of crystal particles formed of the metal oxide, and the crystal particles are bonded to each other at a part of its surface.
Abstract:
Data is read out from a ferroelectric film with its remnant polarization associated with one of two possible logical states of the data and with a bias voltage applied to a control gate electrode over the ferroelectric film. The ferroelectric film creates either up or down remnant polarization. So the down remnant polarization may represent data “1” while the up or almost zero remnant polarization may represent data “0”, for example. By regarding the almost zero remnant polarization state as representing data “0”, a read current value becomes substantially constant in the data “0” state. As a result, the read accuracy improves. Also, if imprinting of one particular logical state (e.g., data “1”) is induced in advance, then the read accuracy further improves.
Abstract:
A liquid precursor for forming a layered superlattice material is applied to an integrated circuit substrate. The precursor coating is annealed in oxygen using a rapid ramping anneal (“RRA”) technique with a ramping rate of 50° C./second at a hold temperature of 650° C. for a holding time of 30 minutes.
Abstract:
A semiconductor memory device includes a field-effect transistor with a gate electrode that has been formed over a semiconductor substrate with a ferroelectric layer interposed between the electrode and the substrate. The device includes a first insulating layer, which is insulated against a leakage current more fully than the ferroelectric layer, between the ferroelectric layer and the gate electrode.
Abstract:
A first reactant gas is flowed into a CVD reaction chamber containing a heated integrated circuit substrate. The first reactant gas contains a first precursor compound or a plurality of first precursor compounds, and the first precursor compound or compounds decompose in the CVD reaction chamber to deposit a coating containing metal atoms on the heated integrated circuit substrate. The coating is treated by RTP. Thereafter, a second reactant gas is flowed into a CVD reaction chamber containing the heated substrate. The second reactant gas contains a second precursor compound or a plurality of second precursor compounds, which decompose in the CVD reaction chamber to deposit more metal atoms on the substrate. Heat for reaction and crystallization of the deposited metal atoms to form a thin film of layered superlattice material is provided by heating the substrate during CVD deposition, as well as by selected rapid thermal processing (“RTP”) and furnace annealing steps.
Abstract:
An integrated circuit memory device includes a thin film layered superlattice material layer and an electrode. An interface buffer layer is formed between said thin film layered superlattice material layer and said electrode. The interface buffer layer is selected from the group consisting of: 1) simple oxides, not including bismuth, of an A-site or a B-site metal; and 2) second layered superlattice materials different from the first layered superlattice material and containing at least one A-site or B-site metal that is the same as an A-site or B-site metal in the first layered superlattice material. The oxide not including bismuth can be a complex oxide including a plurality of metals or a simple oxide including only one metal. Most preferably, the interface buffer layer is selected from the group consisting of strontium tantalate, bismuth tantalate, strontium niobium tantalate, strontium bismuth tantalate niobate, titanium oxide, and tantalum pentoxide, other simple oxides of A-site and B-site metals, and other simple oxides of one or more A-site or B-site metals.
Abstract:
Source/drain regions for a field effect transistor are defined in a semiconductor substrate with a channel region interposed therebetween. A first gate electrode is formed over the semiconductor substrate with an insulating film sandwiched therebetween and has a gate length shorter than the length of the channel region. A ferroelectric film is formed to cover the first gate electrode and to have both side portions thereof make contact with the insulating film. A second gate electrode is formed to cover the ferroelectric film.
Abstract:
A tunneling transistor is provided as an effective means for miniaturization of a semiconductor integrated circuit having nonvolatile memory. An insulating layer is disposed on a silicon substrate. A source and a drain are disposed on the insulating layer, with an insulator of a few nanometers in thickness that provides a tunnel barrier being interposed between the source and the drain. A ferroelectric layer that exhibits spontaneous polarization is disposed directly above a region of the source that is adjacent to the insulator. With this construction, when the ferroelectric layer is polarized in a predetermined direction, at least a portion of the region of the source adjacent to the insulator forms a depletion region, with it being possible to vary the amount of current tunneling through the insulator depending on whether the ferroelectric layer is polarized or not.
Abstract:
A method for fabricating an AlGaInP-based visible light laser device by molecular beam epitaxy is described. In this method, a upper clad layer of (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y P wherein x and y are, respectively, in the ranges of from 0.5 to 1 and from 0.47 to 0.53 is covered with a protective layer serving also as an etching prevenive layer so that a grooved-type structure using the (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y P clad layer can be fabricated without involving degradation of the clad layer by contamination with oxygen, nitrogen and the like.
Abstract translation:描述了通过分子束外延制造基于AlGaInP的可见光激光器件的方法。 在这种方法中,其中x和y分别在0.5至1和0.47至0.53的范围内的(Al x Ga 1-x)y In 1-y P的上包层覆盖有也用作蚀刻预处理的保护层 使得可以制造使用(Al x Ga 1-x)y In 1-y P包覆层的沟槽型结构,而不会由于氧,氮等的污染而导致包覆层劣化。
Abstract:
A method of forming a Bi-layered superlattice material on a substrate using chemical vapor deposition of a precursor solution of trimethylbismuth and a metal compound dissolved in an organic solvent. The precursor solution is heated and vaporized prior to deposition of the precursor solution on an integrated circuit substrate by chemical vapor deposition. No heating steps including a temperature of 650° C. or higher are used.