摘要:
Provided are a silicon nitride layer for a light emitting device, light emitting device using the same, and method of forming the silicon nitride layer for the light emitting device. The silicon nitride layer of the light emitting device includes a silicon nitride matrix and silicon nanocrystals formed in the silicon nitride matrix. A light emitting device manufactured by the silicon nitride layer has a good luminous efficiency and emits light in the visible region including the short-wavelength blue/violet region and the near infrared region.
摘要:
A silicon light emitting diode capable of effectively utilizing light radiated toward the lateral side of a substrate by including a side reflecting mirror is provided. The silicon-based light emitting diode includes a p-type silicon substrate having a plurality of grooves, a light emitting diode layer formed on each of the grooves of the silicon substrate, the light emitting diode layer including an active layer, an n-type doped layer, and a transparent electrode layer, and a metal electrode including a lower metal electrode formed on the bottom surface of the p-type silicon substrate and an upper metal electrode formed on the top surface of the transparent electrode layer. The lateral surface of each of the grooves is separated from the light emitting diode layer and used as a reflecting mirror The lateral surface is referred to as the side reflecting mirror.
摘要:
Disclosed is a nanosized III-nitride compound semiconductor multiple quantum well light-emitting diode, comprising a silicon substrate (100), and an amorphous silicon nitride layer (base) (200) formed on the substrate and including III-nitride compound semiconductor nano grains (230) spontaneously formed therein. The nanosized nitride semiconductor multiple quantum well light-emitting diode and the fabrication method thereof according to the present invention are free from the problems of the conventional III-nitride compound semiconductor epitaxial thin film growth on silicon substrates. Accordingly, a high-quality nanosized III-nitride compound semiconductor multiple quantum well light-emitting diode having no crystalline defect can be provided. Furthermore, the nanosized multiple quantum well light-emitting diode according to the present invention does not require a p-type GaN thin film so that there is no possibility of causing crack that is a problem in the conventional method of fabricating a III-nitride compound semiconductor light-emitting diode using III-nitride epitaxial thin films grown on silicon substrates. In addition, the number of processes of fabricating the diode is remarkably reduced to result in an economical and productive light-emitting diode fabrication process.
摘要:
Provided are a silicon nitride layer for a light emitting device, light emitting device using the same, and method of forming the silicon nitride layer for the light emitting device. The silicon nitride layer of the light emitting device includes a silicon nitride matrix and silicon nanocrystals formed in the silicon nitride matrix. A light emitting device manufactured by the silicon nitride layer has a good luminous efficiency and emits light in the visible region including the short-wavelength blue/violet region and the near infrared region.
摘要:
Provided is a highly-efficient silicon light emitting device including an improved structure by which more light of the light emitted toward the lateral side of the light emitting device is emitted toward the front side thereof than conventional light emitting devices so as to improve the brightness. The silicon light emitting device includes a substrate, a plurality of light emitting structures formed on the substrate, each of the light emitting structures comprising an active layer, and a metal electrode comprising a lower metal electrode formed below the substrate and an upper metal electrode formed on the light emitting structures. The light emitting structures have column shapes whose vertical cross-sections are inverse trapezoid.
摘要:
Provided are a biosensor with a silicon nanowire and a method of manufacturing the same, and more particularly, a biosensor with a silicon nanowire including a defect region formed by irradiation of an electron beam, and a method of manufacturing the same. The biosensor includes: a silicon substrate; a source region disposed on the silicon substrate; a drain region disposed on the silicon substrate; and a silicon nanowire disposed on the source region and the drain region, and having a defect region formed by irradiation of an electron beam. Therefore, by irradiating a certain region of a high-concentration doped silicon nanowire with an electron beam to lower electron mobility in the certain region, it is possible to maintain a low contact resistance between the silicon nanowire and a metal electrode and to lower operation current of a biomaterial detection part, thereby improving sensitivity of the biosensor.
摘要:
A silicon light emitting diode capable of effectively utilizing light radiated toward the lateral side of a substrate by including a side reflecting mirror is provided. The silicon-based light emitting diode includes a p-type silicon substrate having a plurality of grooves, a light emitting diode layer formed on each of the grooves of the silicon substrate, the light emitting diode layer including an active layer, an n-type doped layer, and a transparent electrode layer, and a metal electrode including a lower metal electrode formed on the bottom surface of the p-type silicon substrate and an upper metal electrode formed on the top surface of the transparent electrode layer. The lateral surface of each of the grooves is separated from the light emitting diode layer and used as a reflecting mirror. The lateral surface is referred to as the side reflecting mirror.
摘要:
Provided is a highly efficient silicon-based light emitting diode (LED) including a Distributed Bragg Reflector (DBR), an n-type doping layer, and a p-type substrate structure. The silicon-based LED includes: a substrate having a p-type mesa substrate structure; an active layer that is formed on the substrate and has a first surface and a second surface opposite the first surface; a first reflective layer facing the first surface of the active layer; a second reflective layer that is located on either side of the p-type substrate structure and faces the second surface of the active layer; an n-type doping layer sandwiched between the active layer and the first reflective layer; a first electrode electrically connected to the n-type doping layer; and a second electrode electrically connected to the p-type substrate structure.
摘要:
Provided is a semiconductor light emitting diode, in which a plurality of upper electrodes is formed on a surface of an upper doping layer or an emission layer and at least one lower electrode is formed on a surface of a lower doping layer or a substrate in a silicon-based light emitting diode or a nitride-based light emitting diode to enhance a spreading characteristic of current applied to the electrodes, thereby maximizing an emitting area of the emission layer and inducing an emission having a uniform intensity on an entire surface of the emission layer to further enhance the luminous efficiency of the light emitting diode.
摘要:
The present invention relates to a light-emitting device utilizing amorphous silicon quantum dot nanostructures, wherein the light-emitting device can be fabricated using the existing silicon semiconductor fabrication technology, is excellent in light-emitting efficiency, and can emit light in the visible region including short wavelength region such as green and blue.