Abstract:
A pretreating agent for electroplating includes an aqueous solution containing, as essential ingredient, (A) at least one anti-adsorption agent selected from among a triazole compound, a pyrazole compound, an imidazole compound, a cationic surfactant, and an amphoteric surfactant, and (B) chloride ion. The pretreating agent does not impair adhesion between substrate copper and a photoresist, and does not damage adhesion between the substrate copper and an electrolytic copper plating film.
Abstract:
For use for a circuit board where a through hole and a blind via hole co-exist, an electrolytic copper plating bath in which the covering power for the through hole and the plugging performance for the blind via hole are sufficient, and an electroplating method that uses the electrolytic copper plating bath, are disclosed. The electrolytic copper plating bath is mainly composed of a water-soluble copper salt, sulfuric acid and chloride ions. A polyamide polyamine, obtained on processing by heating of an epichlorohydrin modified product of a polycondensation product of diethylene triamine, adipic acid and ε-caprolactam, is contained in the bath as a leveler.
Abstract:
Disclosed herein is an electrolytic copper plating process for electroplating copper on workpieces in a copper sulfate plating bath filled in a plating tank and containing an organic additive while using a soluble anode or insoluble anode as an anode and the workpieces as cathodes, including the steps of, setting a bath current density at not higher than 5 A/L, immersing metal copper in a region of the copper sulfate plating bath, the region being apart from a region between the anode and the cathode and also from regions adjacent the anode and cathode, respectively, such that a neighborhood of the thus-immersed metal copper can be used as an oxidative decomposition region, setting an immersed area of the metal copper at not smaller than 0.001 dm2/L based on the plating bath, and applying air bubbling to the oxidative decomposition region at not lower than 0.01 L/dm2·min based on the immersed area.
Abstract:
The invention eliminates defects generated in a metal filling a through hole of a printed board by changing an angle at which a plating solution is sprayed or by changing a posture of the printed board at a time point in a process of precipitating the metal from the plating solution and filling the through hole with the precipitated metal while the plating solution or air bubbles are being sprayed onto the printed board.
Abstract:
Disclosed is a method for a repeated electroplating of a workpiece to be plated as a cathode by using an insoluble anode in a plating vessel accommodating a copper sulfate plating bath, wherein a copper dissolution vessel different from the plating vessel is provided, the plating bath is transferred to the copper dissolution vessel and is returned from the copper dissolution vessel to the plating vessel for circulating the plating bath between the plating vessel and the copper dissolution vessel, copper ion supplying salt is charged into the copper dissolution vessel and dissolved in the plating bath so that copper ions consumed by the plating can be replenished, and the workpiece to be plated is continuously electroplated, characterized in that the plating bath is permitted to transfer between the anode side and the cathode side, and the plating bath is returned to vicinity of the anode in the return of the plating bath from the copper dissolution vessel to the plating vessel. Plating performance impairing components, which are produced when the copper ion supplying salt is dissolved in the plating bath for replenishing the copper ions, are oxidized and decomposed, whereby defective plating due to the presence of the plating performance impairing components can be prevented.
Abstract:
A copper electroplating bath useful in filling non-through holes formed on a substrate which contains a water-soluble copper salt, sulfuric acid, and chloride ions and further contains a brightener, a carrier, and a leveler as additives, wherein the leveler contains at least one water-soluble polymer containing quaternary nitrogen, tertiary nitrogen, or both which are cationizable in a solution. In the copper electroplating bath, the filling power for non-through holes formed on a substrate can be easily controlled so as to fit to the size of the holes only by changing the quaternary nitrogen to tertiary nitrogen ratio of the water-soluble polymer to be used as the leveler, which enables copper electroplating of non-through holes of various sizes with a good fit to the sizes.
Abstract:
Disclosed herein is an electrolytic copper plating process for electroplating copper on workpieces in a copper sulfate plating bath filled in a plating tank and containing an organic additive while using a soluble anode or insoluble anode as an anode and the workpieces as cathodes, including the steps of, setting a bath current density at not higher than 5 A/L, immersing metal copper in a region of the copper sulfate plating bath, the region being apart from a region between the anode and the cathode and also from regions adjacent the anode and cathode, respectively, such that a neighborhood of the thus-immersed metal copper can be used as an oxidative decomposition region, setting an immersed area of the metal copper at not smaller than 0.001 dm2/L based on the plating bath, and applying air bubbling to the oxidative decomposition region at not lower than 0.01 L/dm2·min based on the immersed area.
Abstract:
For use for a circuit board where a through hole and a blind via hole co-exist, an electrolytic copper plating bath in which the covering power for the through hole and the plugging performance for the blind via hole are sufficient, and an electroplating method that uses the electrolytic copper plating bath, are disclosed. The electrolytic copper plating bath is mainly composed of a water-soluble copper salt, sulfuric acid and chloride ions. A polyamide polyamine, obtained on processing by heating of an epichlorohydrin modified product of a polycondensation product of diethylene triamine, adipic acid and ε-caprolactam, is contained in the bath as a leveler.
Abstract:
The invention eliminates defects generated in a metal filling a through hole of a printed board by changing an angle at which a plating solution is sprayed or by changing a posture of the printed board at a time point in a process of precipitating the metal from the plating solution and filling the through hole with the precipitated metal while the plating solution or air bubbles are being sprayed onto the printed board.
Abstract:
Disclosed herein is a copper electrolytic plating bath including copper sulfate used in an amount of 50 to 250 g/liter calculated as copper sulfate pentahydrate, 20 to 200 g/liter of sulfuric acid, and 20 to 150 mg/liter of a chloride ion, and a sulfur atom-containing organic compound and a nitrogen atom-containing organic compound serving as organic additives. The nitrogen atom-containing organic compound includes a nitrogen atom-containing polymer compound obtained by a two-stage reaction including reacting one mole of morpholine with two moles of epichlorohydrin in an acidic aqueous solution to obtain a reaction product and further reacting one to two moles, relative to one mole of the morpholine, of imidazole with the reaction product.