Abstract:
The present invention relates to a method for producing a soldered product by which soldering can be accomplished without using a jig. The method for producing a soldered product of the present invention comprises:a provision step of providing a solder and a temporary fixing agent for temporarily fixing the solder; a temporary fixing step of temporarily fixing the solder to a soldering target with the temporary fixing agent; a vaporization step of placing the soldering target with the solder temporarily fixed thereto in a vacuum or heating the soldering target with the solder temporarily fixed thereto to a predetermined temperature lower than the melting temperature of the solder, to vaporize the temporary fixing agent in order to form gaps between the solder and the soldering target; a reduction step, performed concurrently with or after the vaporization step, of reducing, with a reducing gas at a predetermined temperature lower than the melting temperature of the solder, the solder and the soldering target left in the vaporization step; and a solder melting step, performed after the reduction step, of heating the soldering target to a predetermined temperature equal to or higher than the melting temperature of the solder to melt the solder.
Abstract:
To provide a method for estimating a concentration of carboxylic acid gas, which is capable of measuring safely the concentration of carboxylic acid gas such as formic acid gas or the like in a chamber of a soldering apparatus in real time, and a soldering apparatus capable of estimating the concentration of the carboxylic acid gas in the chamber. The method includes the steps of measuring a surface temperature of a same object placed in the chamber at a same point in time by using a thermometer (first thermometer) for measuring a temperature without any influence of infrared absorption by carboxylic acid, and a radiation thermometer (second thermometer) for measuring a temperature by infrared in a wavelength region that the carboxylic acid absorbs, and estimating the concentration of the carboxylic acid gas in the chamber on the basis of a temperature difference (ΔTx) between temperatures indicated by the first and second thermometers. The soldering apparatus includes a heating stage (30), a gas introducing part (25) for introducing a mixed gas of an inert gas and a carboxylic acid gas, a gas discharging part (26), first thermometer (37) and second thermometer (38).
Abstract:
To provide a method and apparatus for manufacturing a joined member that inhibit occurrence of cracks in a joined member even when the joined portion is quenched when members are welded together. The method includes placing the first member D and the second member E with a joint target portion Df and a joint target portion Ef being in contact with each other, welding the joint target portions by heating, subjecting the first member D after the welding to a process for inhibiting occurrence of cracks, and tempering a portion where the first and second members have been welded to each other by electromagnetic heating. The apparatus includes a first electrode 11 to contact with the first member D; a second electrode 12 to contact with the second member E; and an induction heating coil 23 for performing induction heating of a portion where a joint target portions Df and Ef have been contacted and joined to each other, and the induction heating coil 23 is placed between the two electrodes 11 and 12 when the induction heating is performed.
Abstract:
To allow short time spreading for adhesive, verifying whether the adhesive is spread out to a member end. In obtaining a bonded member by applying the adhesive to a surface of one of two members and bonding the members with a member bonding device, a tilt adjusting device acquires with a camera an image of spreading state of the adhesive in the members' bonding surface, and adjusts the tilt of the bonded member when a non-spreading part of the adhesive between ends of the bonded member and the adhesive has a size bias so that the adhesive moves to the larger side of the part, and a spreading adjustment device controls a pushing amount and a pushing time interval of a pressing-side member to adjust spreading of the adhesive so that the part size reduces to a predetermined size depending on the part size acquired with the camera, and cures the adhesive in the bonded member edge with the non-spreading part eliminated.
Abstract:
A method for manufacturing a bonded article having long bonding length and high strength. A first bonding target member and a second bonding target member having a hole portion for receiving the first member are provided. Pressing force is applied between the two members with the first member received in the hole portion, and a current is applied to a bonding target portion between the two members with the pressing force applied. The two members are of materials with different melting points. One of the two members, having lower melting point, has a heat capacity increasing portion in the vicinity of the target portion. The one of the members has a taper face at the target portion, and the heat capacity increasing portion has a face extending from the taper face. The force applying step is performed with the other member positioned not to contact the heat capacity increasing portion.
Abstract:
A heat-bonding apparatus and method of manufacturing a heat-bonded product without overheating during cooling thereof after the completion of the heat-bonding, where the object can be cooled in a shorter time than the conventional when the heat-bonding is performed in a vacuum. A heat-bonding apparatus having a vacuum chamber for housing an object to be heat-bonded and a buffer part, a heater for applying heat to the buffer part placed into contact with the object, an object temperature sensor for detecting a temperature of the object heated through the buffer part, a buffer temperature sensor for detecting a temperature of the buffer part, a vacuum breaker for breaking the vacuum, and a controller for operating the vacuum breaker to break the vacuum when a temperature difference between a temperature detected by the object temperature sensor and a temperature detected by the buffer temperature sensor falls within a range of specified temperature difference.
Abstract:
The capacitive welder includes a charging circuit, a welding transformer, a capacitor, a discharging switching element connected in parallel with a primary winding of the welding transformer and the capacitor that are connected in series, a bypass switching element connected in parallel with the primary winding, welding electrodes connected in parallel with a secondary winding of the welding transformer, and a control circuit for bringing the welding transformer into a reset allowing state by allowing a reset current to flow in the primary winding using the input power introduced through the charging circuit without supplying an ON signal to the bypass switching element, and then supplying the ON signal to the bypass switching element such that the capacitor is charged through the bypass switching element by the input power introduced through the charging circuit.
Abstract:
An excellent soldering apparatus and manufacturing method of soldered product are provided where a workpiece can be efficiently soldered in a short cycle time. The soldering apparatus includes a thermal radiation heater and two coolers for cooling the workpiece which sandwich the heater therebetween. The coolers are movable between a standby position and a cooling position and form a recessed portion in which the heater is placed. The coolers move to the standby position where the coolers are separated from the workpiece and stand by such that the heater is in a state of protruding from the recessed portion while the heater heats the workpiece. The coolers can move from the standby position to the cooling position to cool the workpiece.
Abstract:
To prevent misalignment between substrates and distortion of surface, and to keep film thickness uniformity of thin substrate when two substrates are bonded for bonded member, bonded member manufacturing apparatus of bonding first substrate and second substrate, comprising resin film forming means for forming liquid state resin film on the first substrate, semi-curing means for maintaining outer peripheral section of resin film in uncured state and curing inner section surrounded with outer peripheral section in semi-cured state, and substrate bonding means for bonding first substrate and second substrate by bringing second substrate into contact with resin film, such that one end of outer peripheral section is determined as starting point of contact so that boundary line between contact portion and noncontact portion moves in one direction from starting point to opposite end of outer peripheral section while applying pressing force to second substrate.
Abstract:
To provide a joined member manufacturing apparatus, a method for manufacturing a joined member, and a method for manufacturing a member on which an applied material has been applied, with which it is possible to apply an applied material even in cases where a projection is present in the vicinity of an outer side of an application width of an applied material to be applied on an application target surface. A joined member manufacturing apparatus includes an application device including die head 10 having a distance between the ejection port forming groove and an outer edge of the first opposing face at a portion where an ejection port is formed being 0.1 mm to 1.0 mm, a first suction stage 20A, a second suction stage 20B, an ultraviolet irradiator 45 configured to radiate an ultraviolet ray, a chamber 51 formed to have a size enabling the chamber 51 to accommodate the first and second suction stages 20A and 20B at the same time, the chamber 51 being configured such that a degree of vacuum inside the chamber 51 is adjustable by an operation of a vacuum pump 53, where the applied material G is configured such that viscosity of the applied material G changes when the applied material G is irradiated with an ultraviolet ray.