摘要:
Transistor architectures and fabrication processes generate channel strain without adversely impacting the efficiency of the transistor fabrication process while preserving the material quality and enhancing the performance of the resulting transistor. Transistor strain is generated is PMOS devices using a highly compressive post-salicide amorphous carbon capping layer applied as a blanket over on at least the source and drain regions. The stress from this capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in PMOS channel.
摘要:
Transistor architectures and fabrication processes generate channel strain without adversely impacting the efficiency of the transistor fabrication process while preserving the material quality and enhancing the performance of the resulting transistor. Transistor strain is generated is PMOS devices using a highly compressive post-salicide boron doped carbon capping layer applied as a blanket over on at least the source and drain regions. The stress from this capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in PMOS channel.
摘要:
Transistor architectures and fabrication processes generate channel strain without adversely impacting the efficiency of the transistor fabrication process while preserving the material quality and enhancing the performance of the resulting transistor. Transistor strain is generated is PMOS devices using a highly compressive post-salicide amorphous carbon capping layer applied as a blanket over on at least the source and drain regions. The stress from this capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in PMOS channel.
摘要:
Methods of preparing a low stress porous low-k dielectric material on a substrate are provided. The methods involve the use of a structure former precursor and/or porogen precursor with one or more organic functional groups. In some cases, the structure former precursor has carbon-carbon double or triple bonds. In other cases, one or both of the structure former precursor and porogen precursor has one or more bulky organic groups. In other cases, the structure former precursor has carbon-carbon double or triple bonds and one or both of the structure former precursor and porogen precursor has one or more bulky organic groups. Once the precursor film is formed, the porogen is removed, leaving a porous low-k dielectric matrix with high mechanical strength. Different types of structure former precursors and porogen precursors are described. The resulting low stress low-k porous film may be used as a low-k dielectric film in integrated circuit manufacturing applications.
摘要:
Methods of preparing a carbon doped oxide (CDO) layers having a low dielectric constant are provided. The methods involve, for instance, providing a substrate to a deposition chamber and exposing it to one or multiple carbon-doped oxide precursors having molecules with at least one carbon-carbon triple bond, or carbon-carbon double bond, or a combination of these groups and depositing the carbon doped oxide dielectric layer under conditions in which the resulting dielectric layer has a dielectric constant of not greater than about 2.7.
摘要:
Methods and systems are disclosed for fabricating ultra-low dielectric constant porous materials. In one aspect of the invention, a method for making porous low-k films is disclosed. The method uses polymer based porogens as sacrificial templates around which a chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD) deposited matrix is formed. Upon pyrolysis, the porogens decompose resulting in a porous ultra-low dielectric material. This method can be used, for example, to produce porous organosilicate glass (OSG) materials, ultra-low dielectric nanoporous materials, porous ceramics, porous scaffolds, and/or porous metals. Various uses and embodiments of the methods and systems of this invention are disclosed.
摘要:
Methods of preparing a low stress porous low-k dielectric material on a substrate are provided. The methods involve the use of a structure former precursor and/or porogen precursor with one or more organic functional groups. In some cases, the structure former precursor has carbon-carbon double or triple bonds. In other cases, one or both of the structure former precursor and porogen precursor has one or more bulky organic groups. In other cases, the structure former precursor has carbon-carbon double or triple bonds and one or both of the structure former precursor and porogen precursor has one or more bulky organic groups. Once the precursor film is formed, the porogen is removed, leaving a porous low-k dielectric matrix with high mechanical strength. Different types of structure former precursors and porogen precursors are described. The resulting low stress low-k porous film may be used as a low-k dielectric film in integrated circuit manufacturing applications.
摘要:
Methods of preparing a carbon doped oxide (CDO) layer of low dielectric constant and low residual stress involving, for instance, providing a substrate to a deposition chamber and exposing it to an organosilicon precursor containing unsaturated C—C bonds or to multiple organic precursors including at least one organosilicon and at least one unsaturated C—C bond are provided. The methods may also involve igniting and maintaining a plasma in a deposition chamber using radio frequency power having high and low frequency components with a high percentage of the low frequency component, and depositing the carbon doped dielectric layer under conditions in which the resulting dielectric layer has a residual stress of not greater than, e.g., about 50 MPa, and a dielectric constant not greater than about 3.
摘要:
Methods of preparing a carbon doped oxide (CDO) layers having a low dielectric constant are provided. The methods involve, for instance, providing a substrate to a deposition chamber and exposing it to one or multiple carbon-doped oxide precursors having molecules with at least one carbon-carbon triple bond, or carbon-carbon double bond, or a combination of these groups and depositing the carbon doped oxide dielectric layer under conditions in which the resulting dielectric layer has a dielectric constant of not greater than about 2.7. Methods of preparing a low stress porous low-k dielectric material on a substrate are provided. The methods involve the use of a structure former precursor and/or porogen precursor with one or more organic functional groups. In some cases, the structure former precursor has carbon-carbon double or triple bonds. In other cases, one or both of the structure former precursor and porogen precursor has one or more bulky organic groups. In other cases, the structure former precursor has carbon-carbon double or triple bonds and one or both of the structure former precursor and porogen precursor has one or more bulky organic groups. Once the precursor film is formed, the porogen is removed, leaving a porous low-k dielectric matrix with high mechanical strength. Different types of structure former precursors and porogen precursors are described. The resulting low stress low-k porous film may be used as a low-k dielectric film in integrated circuit manufacturing applications.