Abstract:
The invention relates to a process for dehydrogenation of a hydrocarbon feedstock in the presence of a catalyst that comprises a noble metal M that is selected from the group that consists of platinum, palladium, rhodium, and iridium, at least one promoter X1 that is selected from the group that consists of tin, germanium, and lead, and optionally a promoter X2 that is selected from the group that consists of gallium, indium and thallium, an alkaline or alkaline-earth compound and a porous substrate, in which the atomic ratio X1/M and optionally X2/M is between 0.3 and 8, the Hir/M ratio that is measured by hydrogen adsorption is greater than 0.40, and the bimetallicity index BMI that is measured by hydrogen/oxygen titration is greater than 108.
Abstract:
The invention concerns a process for preparing a catalyst comprising at least one metal from group VIII, rhenium or iridium and a sulphur-containing support, said catalyst having a sodium content which is strictly less than 50 ppm by weight and a sulphur content in the range 1500 to 3000 ppm by weight. The invention also concerns the use of said catalyst in a catalytic reforming reaction.
Abstract:
The invention concerns a catalyst comprising nickel on an aluminium oxide support. The aluminium oxide support has, in the calcined state, a diffractogram obtained by X ray diffractometry comprising peaks which correspond to the following interplanar spacings and relative intensities: Interplanar spacingsRelative intensities d (10−10 m )I/I0 (%) 5.03 to 5.22 1-5 4.56 to 4.60 1-10 4.06 to 4.10 1-5 2.80 to 2.85 5-20 2.7315-35 2.60 5-10 2.4335-40 2.2930-40 1.9960-95 1.9525-50 1.79 1-10 1.53 5-10 1.51 5-10 1.4140-60 1.39100 1.23 to 1.26 1-5 1.14 5-10 1.11 1-5 1.04 1-5 1.00 5-10 0.97 1-5
Abstract:
A supported and sulphur-containing catalyst is described, comprising; a porous support constituted by an organic-inorganic hybrid material for which the covalent bond between the organic and inorganic phases conforms to the formula M-O—Z—R where M represents at least one metal constituting the inorganic phase, Z at least one heteroelement from among phosphorus and silicon and R an organic fragment, at least one metal of group VIB and/or of group VB and/or of group VIII. The invention also relates to the use of this catalyst for the hydrorefining and the hydroconversion of hydrocarbon-containing feedstocks such as petroleum fractions, fractions from coal or biomass or hydrocarbons produced from natural gas.
Abstract:
The invention concerns a process for preparing a hybrid organic-inorganic material (HOIM) with phosphorus-containing bridges between the surface of an inorganic substrate containing an element M and one or more organic groups of the covalent M-O-P-R type, said process using, as a precursor for said organic group or groups, at least one organophosphorus acid halide with formula RxP(O)Xy in which x=1 or 2, y=3−x, X being a halogen and R designating at least one organic alkyl, aryl or aryl-alkyl group.Non-exhaustive applications for the hybrid organic-inorganic material obtained by the process of the invention are in the fields of anti-corrosion, lubrication, microelectronics, nanotechnologies, composite materials, heterogeneous catalysis, supported catalysis, depollution and biomedical applications.
Abstract:
A supported and sulphur-containing catalyst is described, comprising; a porous support constituted by an organic-inorganic hybrid material for which the covalent bond between the organic and inorganic phases conforms to the formula M-O—Z—R where M represents at least one metal constituting the inorganic phase, Z at least one heteroelement from among phosphorus and silicon and R an organic fragment, at least one metal of group VIB and/or of group VB and/or of group VIII. The invention also relates to the use of this catalyst for the hydrorefining and the hydroconversion of hydrocarbon-containing feedstocks such as petroleum fractions, fractions from coal or biomass or hydrocarbons produced from natural gas.
Abstract:
An olefin oligomerization process employs a particular silica-alumina catalyst which comprises a non zeolitic support based on silica-alumina containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2) and has the following characteristics: a mean pore diameter, measured by mercury porosimetry, in the range 20 to 140 Å; a total pore volume, measured by mercury porosimetry, in the range 0.1 ml/g to 0.6 ml/g; a total pore volume, measured by nitrogen porosimetry, in the range 0.1 ml/g to 0.6 ml/g; a BET specific surface area in the range 100 to 550 m2/g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 140 Å, of less than 0.1 ml/g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 160 Å, of less than 0.1 ml/g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 200 Å, of less than 0.1 ml/g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 500 Å, of less than 0.1 ml/g; and an X ray diffraction diagram containing at least the principal characteristic peaks of at least one of the transition aluminas included in the group composed of alpha, rho, khi, eta, gamma, kappa, theta and delta aluminas.
Abstract:
A process is described for synthesising hydrocarbons from a mixture comprising carbon monoxide and hydrogen and possibly carbon dioxide CO2, in the presence of a supported catalyst comprising at least one group VIII metal. The support comprises zirconia or a mixed zirconia-alumina oxide and the zirconia is present in the quadratic and/or amorphous form. Said catalyst is used in a liquid phase in a three-phase reactor.
Abstract:
A process is described in which an unsaturated fat is reacted with ethylene in a metathesis reaction in the presence of at least one non-aqueous ionic liquid to produce both an olefinic fraction and a composition of monoalcohol or polyol esters. Particular application to an oleic sunflower seed oil, an oleic rapeseed oil or to a mixture of monoalcohol esters of said oils, the process producing both an olefinic fraction and a monoalcohol or glycerol esters composition generally having more than half of its chains constituted by unsaturated C10 chains.
Abstract:
A process is described for synthesizing hydrocarbons from a mixture comprising carbon monoxide and hydrogen in the presence of a catalyst comprising at least one group VIII metal supported on a silica-alumina prepared by co-precipitating and calcining at a temperature in the range from about 500° C. to about 1200° C. for at least 6 hours so that said silica-alumina has a specific surface area of less than 260 m2/g. Said catalyst is used in a fixed bed or in suspension in a liquid phase of a three-phase reactor.