摘要:
Provided is a method of crystallizing an amorphous silicon thin film transistor and a method of fabricating a polycrystalline thin film transistor using the same, in which the polycrystalline thin film transistor indicating leakage current characteristics of a level that is applicable for active matrix organic light emitting diode displays (AMOLEDs) can be manufactured by using a silicide seed induced lateral crystallization (SILC) method. The amorphous silicon thin film transistor crystallizing method includes the steps of: forming an amorphous silicon layer on a substrate; forming an active region by patterning the amorphous silicon layer; forming a crystallization induced metal layer in both a source region and a drain region that are placed on both side ends of the active region; forming a number of dot-shaped metal silicide seeds on the surfaces of the source region and the drain region made of amorphous silicon by removing the crystallization induced metal layer; and crystallizing the active region formed of the amorphous silicon layer by heat-treating the substrate by using the metal silicide seeds as crystallization seeds.
摘要:
Disclosed herein is a method of forming a light-absorbing layer of a polycrystalline silicon solar cell, including: forming a polycrystalline silicon layer on a back electrode; forming an intrinsic amorphous silicon layer on the polycrystalline silicon layer; and heat-treating the transparent insulating substrate to vertically crystallize the intrinsic amorphous silicon layer using the polycrystalline silicon layer as a seed for crystallization through a metal induced vertical crystallization (MIVC) process to form the intrinsic amorphous silicon layer into a light-absorbing layer made of polycrystalline silicon, and is a method of fabricating a high-efficiency polycrystalline silicon solar cell using the light-absorbing layer.
摘要:
A field emission backlight for a display device includes upper and lower substrates. The upper substrate includes an upper transparent substrate, a transparent electrode, and a fluorescent part. The lower substrate includes a lower transparent substrate having a receiving groove, a first electrode part, a second electrode part, and an electron-emitting part. The first electrode part is formed on an upper surface of the lower transparent substrate and the second electrode part is formed on a bottom surface of the receiving groove, so that the gap between the first and second electrode parts can be reduced below that conventionally required. This, in turn, enables the level of a voltage applied between the first and the second electrode parts to be reduced, and a corresponding reduction in the manufacturing cost of a field emission backlight to be achieved.
摘要:
The present invention relates to a method and apparatus for fabricating a thin film transistor including a crystalline silicon active layer. According to the method of the present invention, there are advantages in that processing time and production costs can be reduced since a series of processes of fabricating the thin film transistor, such as deposition of source metal, thermal annealing for crystallization, and deposition of an insulating layer or a wiring metal layer, can be consecutively performed in one apparatus.
摘要:
Disclosed is a process for depositing an aluminum oxide thin film necessary for semiconductor devices. The process includes the steps of: subjecting a gaseous organoaluminum compound as an aluminum source in contact with a target substrate and depositing aluminum using plasma. The steps are sequentially repeated to form an aluminum thin film, and further includes the step of oxidizing the aluminum thin film using oxygen plasma. This deposition cycle is repeated to obtain an aluminum oxide thin film. The present invention uses an aluminum source containing less contaminant compared to the prior art, thus obtaining aluminum oxide of high quality. Furthermore, the temperature of the gas supply and the reactor can be lowered in relation to the prior art method to reduce costs in the fabrication of semiconductor devices.
摘要:
A method for fabricating a large single-grained ferroelectric thin film grown by selectively nucleated lateral crystallization (SNLC) using an artificial nucleation seed, a method for fabricating a ferroelectric capacitor using the same, and a method for fabricating a ferroelectric memory device using the same. The ferroelectric thin film fabrication method includes the steps of forming a first conductive layer on one side of a semiconductor substrate, by using a conductive material, forming an artificial nucleation seed in an island form adjacent a position where a ferroelectric thin film is to be formed in the upper portion of the first conductive layer, forming a ferroelectric thin film on the whole surface of the substrate including the nucleation seed, and thermally annealing the ferroelectric thin film to thereby grow the ferroelectric thin film positioned in the lateral side of the nucleation seed into a single-grained ferroelectric thin film.
摘要:
The present invention relates to a method of fabricating a thin film transistor in which a metal silicide line generated from Metal Induced Lateral Crystallization is located at the outside of a channel region. The present invention includes the steps of forming a semiconductor layer on a substrate wherein the semiconductor layer has a first region, a channel region and a second region in order, forming a gate insulating layer/a gate electrode on the channel region, doping the first and the second region heavily with impurity, forming a metal film pattern making the first region a metal-offset, and crystallizing the semiconductor layer by means of applying thermal treatment to the semiconductor layer having the metal film.
摘要:
Provided is a polysilicon thin film transistor having a trench type bottom gate structure using copper and a method of making the same. The polysilicon thin film transistor includes: a transparent insulation substrate; a seed pattern that is formed in a pattern corresponding to that of a gate electrode on the transparent insulation substrate, and that is used to form the gate electrode; a trench type guide portion having a trench type contact window in which an upper portion of the seed pattern is exposed; the gate electrode that is formed by electrodepositing copper on a trench of the exposed seed pattern; a gate insulation film formed on the upper portions of the gate electrode and the trench type guide portion, respectively; and a polysilicon layer in which a channel region, a source region and a drain region are formed on the upper portion of the gate insulation film.
摘要:
Disclosed herein is a polycrystalline silicon solar cell, including: a back electrode formed on a transparent insulating substrate; an N-type polycrystalline silicon layer in which amorphous silicon is crystallized through MIC process, and in which electrons are accumulated; a light-absorbing layer which is formed by vertically crystallizing an intrinsic amorphous silicon layer using the polycrystalline silicon layer as a seed for crystallization through MIVC process, in which pairs of electrons and holes are generated in response to incident light, and which has a vertical column grain structure in which grains are arranged in the direction in which electrons and holes move; a P-type polycrystalline silicon layer which has the vertical column grain structure, and in which holes are accumulated; a transparent electrode layer; front electrodes; and an antireflection coating film, and is a method of fabricating the same.
摘要:
Provided is a polysilicon thin film transistor having a trench type bottom gate structure using copper and a method of making the same. The polysilicon thin film transistor includes: a transparent insulation substrate; a seed pattern that is formed in a pattern corresponding to that of a gate electrode on the transparent insulation substrate, and that is used to form the gate electrode; a trench type guide portion having a trench type contact window in which an upper portion of the seed pattern is exposed; the gate electrode that is formed by electrodepositing copper on a trench of the exposed seed pattern; a gate insulation film formed on the upper portions of the gate electrode and the trench type guide portion, respectively; and a polysilicon layer in which a channel region, a source region and a drain region are formed on the upper portion of the gate insulation film.