摘要:
Provided is an apparatus for producing a silicon nitride sintering body made of a furnace including a heater source. The furnace includes a furnace core chamber defined by at least one partition inside the furnace to prevent an atmosphere containing more than about 30 ppm of carbon monoxide from contacting said silicon nitride sintered body. At least an inner surface of the partition is made of a carbon-free heat-proof material which prevents formation of carbon monoxide gas in an atmosphere in contact with the silicon nitride sintered body during sintering. The furnace also includes a gas supply pipe for supplying an N.sub.2 gas or an inactive gas including an N.sub.2 gas into the furnace core. Also provided is a sintering case made of a vessel defining a sintering atmosphere. The vessel has an opening for loading an object to be sintered into the vessel. At least an inner surface of the vessel is made of a carbon-free heat proof material which prevents the formation of carbon monoxide gas in the sintering atmosphere. The vessel also includes a lid for covering the opening. At least an inner surface of the lid is made of a carbon-free heat proof material which prevents the formation of carbon monoxide gas in the sintering atmosphere.
摘要:
In a semiconductor heat-dissipating substrate made of a Cu—W alloy whose pores have been infiltrated with copper, being a porous tungsten body whose pore diameter at a specific cumulative surface area of 95% is 0.3 μm or more, and whose pore diameter at a specific cumulative surface area of 5% is 30 μm or less, thermal conductivity of 210 W/m·K or more is obtained by decreasing the content of iron-family metal to be less than 0.02 weight %. Likewise, changing the amount of infiltrated copper in a molded object by utilizing a multi-shaft press to vary the amount of vesicles in the middle and peripheral portions makes for offering at low cost a semiconductor heat-dissipating substrate that in between middle and peripheral portions made of different materials does not have bonding matter.
摘要:
In a semiconductor heat-dissipating substrate made of a Cu—W alloys whose pores have been infiltrated with copper, being a porous tungsten body whose pore diameter at a specific cumulative surface area of 95% is 0.3 μm or more, and whose pore diameter at a specific cumulative surface area of 5% is 30 μm or less, thermal conductivity of 210 W/m·K or more is obtained by decreasing the content of iron-family metal to be less than 0.02 weight %. Likewise, changing the amount of infiltrated copper in a molded object by utilizing a multi-shaft press to vary the amount of vesicles in the middle and peripheral portions makes for offering at low cost a semiconductor heat-dissipating substrate that in between middle and peripheral portions made of different materials does not have bonding matter.
摘要:
A member for semiconductor devices comprising a composite alloy of aluminum or an aluminum alloy and silicon carbide, wherein silicon carbide grains are dispersed in aluminum or the aluminum alloy in an amount of from 10 to 70% by weight, the amount of nitrogen in the surface of the member is larger than that in the inside thereof, and the ratio of aluminum or the aluminum alloy to silicon carbide is the same in the surface and the inside. The member is produced by mixing powdery materials of aluminum or an aluminum alloy and silicon carbide, compacting the mixed powder, and sintering the compact in a non-oxidizing atmosphere containing nitrogen gas, at a temperature between 600° C. and the melting point of aluminum. The member is lightweight and has high thermal conductivity as well as thermal expansion coefficient which is well matches with that of ceramics and others. Therefore, the member is especially favorable to high-power devices.
摘要:
On a connection surface 2 of a base substrate 1 composed of a material including Cu, a heat spreader includes a Ni plating layer 3 having a high Cu region 5 where the content of Cu is not less than 1% by mass, in a range of not more than 2 μm in the thickness direction from an interface with a base substrate 1, and the content of Cu in a foremost surface 6 of the Ni plating layer 3 is less than 0.5% by mass, and the adhesion strength of the Ni plating layer 3 to the base substrate 1 is not less than 90 N/mm2. A semiconductor device includes a semiconductor element, and the heat spreader for removing heat generated when the semiconductor element is operated. In a manufacturing method, a first plating layer to form the high Cu region is formed on the connection surface 2 of the base substrate 1 and heat-treated at a temperature of more than 600° C., and a second plating layer is then formed thereon and heat-treated at a temperature of not more than 600° C.
摘要:
In a semiconductor heat-dissipating substrate made of a Cu—W alloy whose pores have been infiltrated with copper, being a porous tungsten body whose pore diameter at a specific cumulative surface area of 95% is 0.3 μm or more, and whose pore diameter at a specific cumulative surface area of 5% is 30 μm or less, thermal conductivity of 210 W/m·K or more is obtained by decreasing the content of iron-family metal to be less than 0.02 weight %. Likewise, changing the amount of infiltrated copper in a molded object by utilizing a multi-shaft press to vary the amount of vesicles in the middle and peripheral portions makes for offering at low cost a semiconductor heat-dissipating substrate that in between middle and peripheral portions made of different materials does not have bonding matter.
摘要:
A silicon carbide based composite material includes as a first component, a metal mainly consisting of aluminum or copper, and as a second component, particles mainly consisting of silicon carbide having high purity and few defects. The material is obtained by heating a compact of the raw material powder containing the first and second components at a temperature not lower than the melting point of the metal mainly consisting of aluminum or copper, and by forging and solidifying under pressure. Preferably, the silicon carbide raw material powder is prepared to have high purity by carrying out a preliminary treatment, or the material after forging or a material obtained through a conventional infiltration process is further heated at a temperature lower than the melting point of the first component. In this manner, an improved superior thermal conductivity can be obtained.
摘要:
A material for a semiconductor substrate comprising an aluminum-silicon alloy containing from 50% to 80% by weight of silicon and having a thermal conductivity of 0.28 cal/cm.sec..degree. C. or higher, a coefficient of thermal expansion of 12.times.10.sup.-6 /.degree. C. or smaller and a density of 2.5 g/cm.sup.3 or lower. This material is produced by molding an Al--Si alloy powder, which has been obtained through rapid solidification by atomization, to form a compact and then consolidating the compact by means of forging, sintering, etc. The substrate material may have an Al or Al alloy covering layer at least one surface thereof and, further, as necessary, an insulating or plating layer on the covering layer. The thus obtained substrate material is lightweight and has a suitable coefficient of thermal expansion for a substrate as well as a high thermal conductivity. Therefore, a semiconductor device with high performance and reliability can be obtained using such substrate material.
摘要:
A nitrogenous Al--Si powder metallurgical alloy contains at least 4 wt % and at most 15 wt % of nitrogen, with the remaining part consisting essentially of Al, Si and an unavoidable component. Consequently, a highly safe material which is lightweight and has a density of at most 3.0 g/cm.sup.3, a thermal expansion coefficient in the range of 5 to 10.times.10.sup.-6 /.degree.C., and a thermal conductivity coefficient of at least 0.2 cal/cm.multidot.sec.multidot..degree.C. has been obtained.
摘要翻译:含氮Al-Si粉末冶金合金含有至少4wt%和至多15wt%的氮,其余部分基本上由Al,Si和不可避免的组分组成。 因此,重量轻,密度最高为3.0g / cm 3,热膨胀系数为5〜10×10 -6 /℃,导热系数为0.2cal / cmxsecx℃。
摘要:
A member for semiconductor devices comprising a composite alloy of aluminum or an aluminum alloy and silicon carbide, wherein silicon carbide grains are dispersed in aluminum or the aluminum alloy in an amount of from 10 to 70% by weight, the amount of nitrogen in the surface of the member is larger than that in the inside thereof, and the ratio of aluminum or the aluminum alloy to silicon carbide is the same in the surface and the inside. The member is produced by mixing powdery materials of aluminum or an aluminum alloy and silicon carbide, compacting the mixed powder, and sintering the compact in a non-oxidizing atmosphere containing nitrogen gas, at a temperature between 600.degree. C. and the melting point of aluminum. The member is lightweight and has high thermal conductivity as well as thermal expansion coefficient which is well matches with that of ceramics and others. Therefore, the member is especially favorable to high-power devices.