Abstract:
A wireless (e.g., near field or RF) communication device, and methods of manufacturing and using the same are disclosed. The wireless communication device includes a receiver and/or transmitter, a substrate with an antenna thereon, an integrated circuit, and one or more protection lines. The antenna receives and/or transmits or broadcasts a wireless signal. The integrated circuit processes the wireless signal and/or information therefrom, and/or generates the wireless signal and/or information therefor. The integrated circuit has a first set of terminals electrically connected to the antenna. The protection line(s) are on a common or different substrate as the antenna. The protection line(s) sense or determine a continuity state of a package or container on which the communication device is placed or to which the communication device is fixed or adhered, and are electrically connected to a second set of terminals of the integrated circuit different from the first set of terminals.
Abstract:
Circuits and circuit elements configured to generate a random delay, a monostable oscillator, circuits configured to broadcasting repetitive messages wireless systems, and methods for forming such circuits, devices, and systems are disclosed. The present invention advantageously provides relatively low cost delay generating circuitry based on TFT technology in wireless electronics applications, particularly in RFID applications. Such novel, technically simplified, low cost TFT-based delay generating circuitry enables novel wireless circuits, devices and systems, and methods for producing such circuits, devices and systems.
Abstract:
A wireless (e.g., near field or RF) communication device, and methods of manufacturing and using the same are disclosed. The wireless communication device includes a receiver and/or transmitter, a substrate with an antenna thereon, an integrated circuit, and one or more protection lines. The antenna receives and/or transmits or broadcasts a wireless signal. The integrated circuit processes the wireless signal and/or information therefrom, and/or generates the wireless signal and/or information therefor. The integrated circuit has a first set of terminals electrically connected to the antenna. The protection line(s) are on a common or different substrate as the antenna. The protection line(s) sense or determine a continuity state of a package or container on which the communication device is placed or to which the communication device is fixed or adhered, and are electrically connected to a second set of terminals of the integrated circuit different from the first set of terminals.
Abstract:
A polymerization inhibitor for a silane enables purification of the silane to a high degree because a polymer is not formed even when heating to distill the silane, even when a cyclic silane monomer is present. A high-purity cyclic silane composition is obtained, in particular high-purity cyclopentasilane, that can be polymerized and applied onto a substrate as a coating-type polysilane composition and fired to produce a good silicon thin film with high conductivity. The polymerization inhibitor includes a secondary or tertiary aromatic amine. The aromatic group is a phenyl group or a naphthyl group. The polymerization inhibitor is present in a proportion of 0.01 to 10 mol % per mole of the silane. In the polymerization inhibitor, a boiling point of the aromatic amine is 196° C. or higher.
Abstract:
There is provided a cyclic silane having high purity, particularly cyclopentasilane having high purity, and a composition containing a polysilane obtained by polymerization of the cyclic silane which a highly conductive and good silicon thin film is formed by applying the composition in a form of a coating-type polysilane composition to a substrate, followed by baking. A method for producing a cyclic silane of Formula (3): (SiH2)n Formula (3) (wherein n is an integer of 4 to 6) comprising an (A) step of reacting a cyclic silane compound of Formula (1): (SiR1R2)n Formula (1) (wherein R1 and R2 are each a hydrogen atom, a C1-6 alkyl group, or an optionally substituted phenyl group, and n is an integer of 4 to 6) with hydrogen halide in cyclohexane in the presence of aluminum halide to obtain a solution containing a cyclic silane compound of Formula (2): (SiR3R4)n Formula (2) (wherein R3 and R4 are each a halogen atom, and n is an integer of 4 to 6), and then distilling the solution to obtain a cyclic silane compound of Formula (2), and a (B) step of dissolving the cyclic silane compound of Formula (2) in an organic solvent, and reducing the cyclic silane compound of Formula (2) with hydrogen or lithium aluminum hydride. The distillation at the (A) step may be carried out at a temperature of 40 to 80° C. under a reduced pressure of 0 to 30 Torr.
Abstract:
Doped semiconductor ink formulations, methods of making doped semiconductor ink formulations, methods of coating or printing thin films, methods of forming electronic devices and/or structures from the thin films, and methods for modifying and controlling the threshold voltage of a thin film transistor using the films are disclosed. A desired dopant may be added to an ink formulation comprising a Group IVA compound and a solvent, and then the ink may be printed on a substrate to form thin films and conductive structures/devices, such as thin film transistors. By adding a customized amount of the dopant to the ink prior to printing, the threshold voltage of a thin film transistor made from the doped semiconductor ink may be independently controlled upon activation of the dopant.
Abstract:
A ferroelectric memory cell (1) and a memory device (100) comprising one or more such cells (1). The ferroelectric memory cell comprises a stack (4) of layers arranged on a flexible substrate (3). Said stack comprises an electrically active part (4a) and a protective layer (11) for protecting the electrically active part against scratches and abrasion. Said electrically active part comprises a bottom electrode layer (5) and a top electrode layer (9) and at least one ferroelectric memory material layer (7) between said electrodes. The stack further comprises a buffer layer (13) arranged between the top electrode layer (9) and the protective layer (11). The buffer layer (13) is adapted for at least partially absorbing a lateral dimensional change (ΔL) occurring in the protective layer (11) and thus preventing said dimensional change (ΔL) from being transferred to the electrically active part (4a), thereby reducing the risk of short circuit to occur between the electrodes.
Abstract:
Wireless devices such as sensors, interactive displays and electronic article surveillance (EAS) and/or radio frequency identification (RFID) tags including integrated circuitry and an antenna and/or inductor printed thereon, and methods for making and using the same, are disclosed. The device generally includes an integrated circuit on a substrate and an antenna, directly on the substrate and/or the integrated circuit, in electrical communication with the integrated circuit. The method of making a wireless device generally includes forming an integrated circuit on the substrate and printing at least part of an antenna or antenna precursor layer on the integrated circuit and/or substrate. The present invention advantageously provides a low cost wireless device capable of operating at MHz frequencies that can be manufactured in a shorter time period than conventional devices.
Abstract:
Embodiments of the present invention relate to circuit layouts that are compatible with printing electronic inks, printed circuits formed by printing an electronic ink or a combination of printing and conventional blanket deposition and photolithography, and methods of forming circuits by printing electronic inks onto structures having print-compatible shapes. The layouts include features having (i) a print-compatible shape and (ii) an orientation that is either orthogonal or parallel to the orientation of every other feature in the layout.
Abstract:
Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.