Abstract:
A semiconductor component with passivation includes at least two double passivating layers, of which an uppermost is applied to a planar surface of a layer located therebelow. The double passivating layers include two layers of different dielectric materials, for example silicon oxide and silicon nitride. The respective thicknesses of the individual passivating layers can be adapted to dimensions of the structuring of the layer to which the passivation is applied. This produces a reliable passivation which is particularly suitable for capacitively measuring fingerprint sensors.
Abstract:
A method is disclosed for producing a micromechanical component. The micromechanical component has sensor holes, wherein at least one component protective layer and/or a spacer coating is applied on the component before separating the wafer into chips. The component protective layer sealingly covers at least the walls of the holes extending parallel to the surface of the wafer and perpendicular to the surface of the wafer and the spacer coating sealingly covers at least the walls of the holes extending parallel to the surface of the wafer.
Abstract:
Method for manufacturing an absolute pressure sensor as micromechanical component on a silicon substrate, whereby a cavity (4) is etched out in an auxiliary layer (3) under a membrane layer (5) through etching openings (6), the etching openings are closed with a passivation layer (7), whereby a specific etching opening (11) is re-opened in a via hole etching and this opening is re-closed with a metallization or dielectric material (10, 12) in a following process step that ensues at low pressure.
Abstract:
Rotation rate sensor as a micromechanical component in silicon, in which a ring with a rigid strut along a diameter is so suspended at elastic braces and anchoring arrangements on a substrate as to be able to perform rotation oscillations about its center axis and to be able to be tilted about the strut under the influence of outer torques. There are electrodes present at the ring and at the substrate, at which electrodes electrical voltages can be applied such that rotary oscillations of the ring about its center axis can be excited and rotary oscillations about the strut can be detected. To stabilize the position of the ring in the neutral position, additional electrodes can be provided at the ring and at the substrate for the generation of electrostatic forces.
Abstract:
Manufacturing method for an acceleration sensor on silicon, whereby, following the manufacture of the doped regions required for the electronic function elements, a polysilicon layer is deposited. The polysilicon layer is structured such that a portion of this polysilicon layer forms an electrode (for example, the emitter electrode (9) and the collector electrode (10) of a transistor) and a sensor layer (17) provided as sensor element.
Abstract:
An electronic component is described and has a dielectric layer which is constructed on a substrate, conductive surfaces that are constructed on the dielectric layer, and an electrically conductive guard structure. The guard structure is disposed in a plane above the conductive surfaces such that the conductive surfaces are not completely covered by the guard structure.
Abstract:
A semiconductor chip has a membrane mounted on supports that are held in the material of the chip so that the membrane is supported at a space from the chip. The membrane may be a metal layer. The supports are columns or webs that extend into the chip material. Electrical connections to the membrane may be made by conductive supports.
Abstract:
An acceleration sensor has a proof mass attached by resilient elements, in the form of micromechanical components, in a monocrystalline silicon layer of an SOI (silicon-on-insulator) substrate, the insulator layer of the substrate being removed under the structure which is susceptible to acceleration, in order to enable free mobility of the micromechanical components. Piezoresistors are provided for detecting movement of the proof mass, the piezoresistors supplying electrical signals to an evaluation circuit.
Abstract:
An acceleration sensor is produced on a silicon substrate by etching to leave a cantilevered beam of polysilicon with a tip on the substrate projecting toward this beam. Acceleration of the sensor causes the beam to bend, thereby changing the spacing between the tip and the beam, and thereby also changing the tunnel current, which is measured. Electrodes are provided that, given application of a potential thereto, effect an electrostatic compensation of the bending of the beam.
Abstract:
In a relative pressure sensor or miniaturized microphone as a micromechanical sensor component, a polysilicon membrane is arranged over a polysilicon membrane of an SOI substrate. A recess that is connected to the cavity between the membrane and the body silicon layer by openings in the body silicon layer is present in the substrate on the back side. Given an excursion of the membrane, a pressure equalization can therefore occur in the cavity as a result of these openings. The measurement occurs capacitatively by electrical connection of the electrically conductively doped membrane and a doped region formed in the body silicon layer.