摘要:
A semiconductor device includes: a semiconductor substrate having a trench therein, a metal-containing barrier layer extending along an inner wall of the trench and defining a wiring space in the trench, the wiring space having a first width along a first direction, and a metal-containing conductive line on the metal-containing barrier layer in the wiring space, and including at least one metal grain having a particle diameter of about the first width along the first direction.
摘要:
A semiconductor device is fabricated by forming a gate electrode structure, comprising a gate oxide layer pattern, a polysilicon layer pattern, and sidewall spacers on a silicon substrate, forming source/drain regions on both sides of the gate electrode structure in the silicon substrate, depositing a physical vapor deposition (PVD) cobalt layer on the gate electrode structure using PVD, depositing a chemical vapor deposition (CVD) cobalt layer on the PVD cobalt layer using CVD, annealing the silicon substrate to react the PVD and CVD cobalt layers with polysilicon on an upper surface of the gate electrode structure, stripping at least a portion of the PVD cobalt layer and the CVD cobalt layer that has not reacted, and annealing the silicon substrate after stripping the at least the portion of the PVD cobalt layer and the CVD cobalt layer.
摘要:
One embodiment of a method for forming a semiconductor device can include forming a gate pattern on a semiconductor substrate and performing a selective re-oxidation process on the gate pattern in gas ambient including hydrogen, oxygen, and nitrogen. When the gate pattern includes a tunnel insulation layer, a metal nitride layer and a metal layer, the selective re-oxidation process heals the etching damage of a gate pattern and simultaneously prevents oxidation of the metal nitride layer and a tungsten electrode.
摘要:
A nonvolatile memory device includes a semiconductor substrate including a cell region and a peripheral circuit region, a cell gate on the cell region, and a peripheral circuit gate on the peripheral circuit region, wherein the cell gate includes a charge storage insulating layer on the semiconductor substrate, a gate electrode on the charge storage insulating layer, and a conductive layer on the gate electrode, and the peripheral circuit gate includes a gate insulating layer on the semiconductor substrate, a semiconductor layer on the gate insulating layer, an ohmic layer on the semiconductor layer, and the conductive layer on the ohmic layer.
摘要:
A semiconductor device is fabricated by forming a gate electrode structure, comprising a gate oxide layer pattern, a polysilicon layer pattern, and sidewall spacers on a silicon substrate, forming source/drain regions on both sides of the gate electrode structure in the silicon substrate, depositing a physical vapor deposition (PVD) cobalt layer on the gate electrode structure using PVD, depositing a chemical vapor deposition (CVD) cobalt layer on the PVD cobalt layer using CVD, annealing the silicon substrate to react the PVD and CVD cobalt layers with polysilicon on an upper surface of the gate electrode structure, stripping at least a portion of the PVD cobalt layer and the CVD cobalt layer that has not reacted, and annealing the silicon substrate after stripping the at least the portion of the PVD cobalt layer and the CVD cobalt layer.
摘要:
Embodiments of the invention provide a method for removing hydrogen gas from a chamber and a method for performing a semiconductor device fabrication sub-process and removing hydrogen gas from a chamber. The method for removing hydrogen gas from a chamber comprises removing a substrate from a chamber, wherein residual hydrogen gas is disposed in the chamber, injecting oxygen gas or ozone gas into the chamber, producing plasma in the chamber, and removing OH radicals from the chamber.
摘要:
The present invention provides methods for forming cobalt silicide layers, including introducing a vaporized cobalt precursor onto a silicon substrate to form a cobalt layer. The vaporized cobalt precursor has the formula Co2(CO)6(R1—C≡C—R2), wherein R1 is H or CH3, and R2 is H, t-butyl, methyl or ethyl. The silicon substrate is thermally treated so that silicon is reacted with cobalt to form a cobalt silicide layer. Methods for manufacturing semiconductor devices including the cobalt silicide layers described herein and such devices are also provided.
摘要:
Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.
摘要:
A method for forming a gate pattern of a semiconductor device can include isotropically etching a gate insulating layer located between a gate conductive layer pattern and a substrate to recess an exposed side wall of the gate insulating layer pattern beyond a lower corner of the gate conductive layer pattern to form an undercut region. The gate conductive layer pattern can be treated to round off the lower corner.
摘要:
A gate electrode of a transistor can include an interface between a polysilicon conformal layer and a tungsten layer thereon in a trench in a substrate and a capping layer extending across the trench and covering the interface. Related methods are also disclosed.