Abstract:
A method and apparatus are provided in which a cavity is formed in a support structure, the support structure being operable to support a semiconductor device, disposing at least a portion of a circuit element in the cavity in the support structure, filling the cavity in the support structure with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material, and electrically connecting the semiconductor device to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.
Abstract:
A circuit board has a first component interface configured to connect to a first circuit board component, a second component interface configured to connect to a second circuit board component, a differential signal pair electrically connecting the first component interface to the second component interface, and a signal return path configured to operate as a signal return pathway for the differential signal pair. The signal return path includes first conductive material which is in electrical communication with the first component interface, second conductive material which is in electrical communication with the second component interface, and a dielectric which provides direct current separation between the first and second conductive material. Such a circuit board may alleviate the need for DC blocking capacitors along the differential pair, and along other differential pairs when the circuit board has multiple differential pairs connecting the first and second component interfaces.
Abstract:
A circuit board module has an IC device, discrete components, and a circuit board structure in electrical communication with the IC device and the discrete component. The circuit board structure includes non-conductive material defining a top surface of the circuit board structure and a bottom surface of the circuit board structure, vias supported by the non-conductive material, top pads electrically coupled to the vias, and bottom pads electrically coupled to the vias. The top pads are disposed along the top surface of the circuit board structure and are soldered to IC device. The bottom pads are disposed along the bottom surface of the circuit board structure and are configured to solder to the discrete components. The bottom pads include a group of angled bottom pads which is soldered to a group of the discrete components substantially at 45 degree angles relative to sides of the IC device.
Abstract:
A small form-factor pluggable (SFP) module includes a board with an end portion to be inserted into a connector device. A first set of signal pads is arranged along an edge of a first surface of the SFP board at the end portion and a second set of signal pads along an edge of a second surface of the SFP board at the end portion. A third set of signal pads is disposed on the second surface at the end portion, offset from the edge of the second surface. A transceiver, coupled to the signal pads of the first, second, and third sets of signal pads, is configured to transmit and receive signals via the third set of signal pads and to transmit and receive signals via at least one of the first and second sets of signal pads.
Abstract:
A circuit board has a first component interface configured to connect to a first circuit board component, a second component interface configured to connect to a second circuit board component, a differential signal pair electrically connecting the first component interface to the second component interface, and a signal return path configured to operate as a signal return pathway for the differential signal pair. The signal return path includes first conductive material which is in electrical communication with the first component interface, second conductive material which is in electrical communication with the second component interface, and a dielectric which provides direct current separation between the first and second conductive material. Such a circuit board may alleviate the need for DC blocking capacitors along the differential pair, and along other differential pairs when the circuit board has multiple differential pairs connecting the first and second component interfaces.
Abstract:
A method and apparatus are provided in which a cavity is formed in a support structure, the support structure being operable to support a semiconductor device, disposing at least a portion of a circuit element in the cavity in the support structure, filling the cavity in the support structure with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material, and electrically connecting the semiconductor device to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.
Abstract:
Computer-implemented systems and methods are provided for implementing a dynamic model switching simulator that generates a plurality of simulations. A system and method generates a simulation comprising predictions over a plurality of time periods. Generating a simulation includes generating a first time period prediction using a first model of a first model type. Generating the plurality of subsequent time period predictions includes evaluating the model switching rule to identify whether to switch models for a subsequent time period prediction, generating the subsequent time period prediction using the first model if a switch of models is not identified, and generating the subsequent time period prediction using a second model of a second model type otherwise.
Abstract:
An area array device has a grid array of primary electrical contacts coupled to a coupling surface of the device and configured to carry data signals between the area array package and a circuit board. The area array device also has an additional series of secondary electrical contacts coupled to the coupling surface of the device and configured to carry power signals between the area array package and the circuit board. The additional series of secondary electrical contacts provides a relatively large amount of power to the area array package while allowing a manufacturer to maintain the number of primary electrical contacts of the grid array configured to carrying data signals and therefore maintain the overall performance of the area array package.
Abstract:
A circuit board module has an IC device, discrete components, and a circuit board structure in electrical communication with the IC device and the discrete component. The circuit board structure includes non-conductive material defining a top surface of the circuit board structure and a bottom surface of the circuit board structure, vias supported by the non-conductive material, top pads electrically coupled to the vias, and bottom pads electrically coupled to the vias. The top pads are disposed along the top surface of the circuit board structure and are soldered to IC device. The bottom pads are disposed along the bottom surface of the circuit board structure and are configured to solder to the discrete components. The bottom pads include a group of angled bottom pads which is soldered to a group of the discrete components substantially at 45 degree angles relative to sides of the IC device.
Abstract:
An area array device has a grid array of primary electrical contacts coupled to a coupling surface of the device and configured to carry data signals between the area array package and a circuit board. The area array device also has an additional series of secondary electrical contacts coupled to the coupling surface of the device and configured to carry power signals between the area array package and the circuit board. The additional series of secondary electrical contacts provides a relatively large amount of power to the area array package while allowing a manufacturer to maintain the number of primary electrical contacts of the grid array configured to carrying data signals and therefore maintain the overall performance of the area array package.